López-Amo Sáinz, Manuel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
López-Amo Sáinz
First Name
Manuel
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
153 results
Search Results
Now showing 1 - 10 of 153
Publication Open Access Comparative study of ring and random cavities for fiber lasers(Optical Society of America, 2014) Fernández Vallejo, Montserrat; Rota Rodrigo, Sergio; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaAn experimental comparison of three fiber laser structures with the same Raman gain medium is presented in order to establish the main pros and cons of each basic scheme. The first fiber laser is based on a hybrid ring–random fiber laser, the second one is a pure ring fiber laser, and the last one is a random fiber laser. Several aspects have been taken into account in the study. First, from the optical point of view, the parameters of interest compared are output power, lasing threshold, slope efficiency, power fluctuations, and the longitudinal modes have been analyzed. Second, the possible utilization of fiber lasers in digital modulated optical communication systems is also studied.Publication Open Access Narrow-linewidth multi-wavelength random distributed feedback laser(IEEE / OSA, 2015) Leandro González, Daniel; Rota Rodrigo, Sergio; Ardanaz, Diego; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this work, narrow-band emission lines are generated by means of two random distributed feedback fiber laser schemes. Spectral line-widths as narrow as 3.2 pm have been measured, which significantly improves previous reported results. The laser is analyzed with the aim of obtaining a spectral line-width as narrow as possible. Additionally a variation of this setup for multi-wavelength operation is also validated. Both schemes present a simple topology that use a combination of phase-shifted fiber Bragg gratings and regular fiber Bragg gratings as filtering elements.Publication Open Access Single-longitudinal mode laser structure based on a very narrow filtering technique(Optical Society of America, 2013) Rodríguez Cobo, Luis; Quintela, M. A.; Rota Rodrigo, Sergio; López-Amo Sáinz, Manuel; López Higuera, José Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA narrow filtering technique based on the spectral overlapping of two uniform FBGs and applied to obtain a Single Longitudinal Mode (SLM) laser is proposed and demonstrated in this work. The two FBGs are spectrally detuned to reduce their coincident reflection response narrowing the equivalent filter bandwidth. A proof-of-concept linear laser has been built and tested exhibiting SLM operation even with temperature and strain variations.Publication Open Access SnO2-MOF-Fabry-Pérot humidity optical sensor system based on Fast Fourier transform technique(SPIE, 2016) López Aldaba, Aitor; López Torres, Diego; Ascorbe Muruzabal, Joaquín; Rota Rodrigo, Sergio; Elosúa Aguado, César; López-Amo Sáinz, Manuel; Arregui San Martín, Francisco Javier; Corres Sanz, Jesús María; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaIn this paper, a new sensor system for relative humidity measurements based on a SnO2 sputtering deposition on a microstructured optical fiber (MOF) low-finesse Fabry-Pérot (FP) sensing head is presented and characterized. The interrogation of the sensing head is carried out by monitoring the Fast Fourier Transform phase variations of the FP interference frequency. This method is low-sensitive to signal amplitude variations and also avoids the necessity of tracking the evolution of peaks and valleys in the spectrum. The sensor is operated within a wide humidity range (20%-90% relative humidity) with a maximum sensitivity achieved of 0.14rad/%. The measurement method uses a commercial optical interrogator as the only active element, this compact solution allows real time analysis of the data.Publication Open Access Real-time FFT analysis for interferometric sensors multiplexing(IEEE / OSA, 2015) Leandro González, Daniel; Bravo Acha, Mikel; Ortigosa Cayetano, Amaia; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this paper, a theoretical and experimental study of two interferometric sensor multiplexing schemes has been carried out by means of the fast Fourier transform (FFT) analysis. This work addresses one of the main drawbacks of photonic crystal fiber (PCF) sensors, that is, its multiplexing capability. Using a commercial optical interrogator combined with a simple FFT measurement technique, the simultaneous real-time monitoring of several PCF sensors is achieved. A theoretical analysis has been performed where simulations matched with the experimental results. For the experimental verification, highly birefringent (HiBi) fiber sections that operated as sensing elements were multiplexed and tested in two configurations. Due to the FFT analysis, both multiplexing schemes can be properly interrogated by monitoring the FFT phase change at the characteristic spatial-frequency of each sensor. For this purpose a commercial interrogator and a custom Matlab program were used for computing the FFT and for monitoring the FFT phase change in real-time (1 Hz).Publication Open Access Development of a water flow and velocity optical fiber sensor for field testing(Optica Publishing Group, 2022) Rodríguez Rodríguez, Armando; Urroz Unzueta, José Carlos; Diéguez Elizondo, Pedro; Bravo Acha, Mikel; López-Amo Sáinz, Manuel; López Rodríguez, José Javier; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA water flow and velocity fiber optic sensor system was developed and tested. The sensing head was especially developed and ruggedized to measure velocities at different depths, in order to calculate the discharge in channels.Publication Open Access WDM and TDM interrogation by sequentially pulsing direct modulated DFBs(Optica, 2020) Pérez González, Asier; Bravo Acha, Mikel; Leandro González, Daniel; Pérez Herrera, Rosa Ana; López-Amo Sáinz, Manuel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISCA new versatile and cost-effective interrogation system by pulsing direct modulated (DM) DFB laser diodes is proposed. 1 pm wavelength resolution and 600 m sensor spacing is demonstrated by sequentially pulsing a DM DFB.Publication Open Access Microstructured optical fiber sensor for soil moisture measurements(Optical Society of America, 2018) López Aldaba, Aitor; López Torres, Diego; Campo-Bescós, Miguel; López Rodríguez, José Javier; Yerro Lizarazu, David; Elosúa Aguado, César; Arregui San Martín, Francisco Javier; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; IngenieríaA discrete sensor based on a Sn0₂-FP (Fabry-Pérot) cavity is presented and characterized in real soil conditions. Results are compared, for the first time to our knowledge, with a commercial capacitive sensor and gravimetric measurements.Publication Open Access Frequency modulated continuous wave system for optical fiber intensity sensors with optical amplification(IEEE, 2009) Pérez Herrera, Rosa Ana; Frazão, Orlando; Santos, José Luís; Araújo, Francisco Moita; Ferreira, Luis Alberto; Baptista, José Manuel; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaWe report on the use of erbium doped fiber (EDF) amplification to enhance a frequency modulated continuous wave (FMCW) technique for referencing optical intensity sensors located between two Bragg grating structures. The experiment combines the concept of FMCW with the spectrally selective mirror properties of Bragg gratings to interrogate with referencing properties intensity based sensors. The interrogation system without amplification yields a sensor resolution of around 0.078 dB. When the EDF amplifier is introduced into the experimental set up, the sensor sensitivity does not change, but the signal-to-noise ratio is improved, resulting into an enhanced resolution of 0.025 dB. We also obtain a remote sensing operation at a location of 50 km, showing the feasibility of this configuration to be used as a remote sensing application.Publication Open Access Ultra-long (290 km) remote interrogation sensor network based on a random distributed feedback fiber laser(Optical Society of America, 2018) Miguel Soto, Verónica de; Leandro González, Daniel; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, an interferometric sensor has been interrogated 290 km away from the monitoring station, reaching the longest distance in fiber optic sensing up to date. This has been attained by employing a double-pumped random distributed feedback fiber laser as the light source for a fiber optic low-coherence interferometry scheme. Additionally, the capability of the system to achieve coherence multiplexing for ultra-long range measurements (up to 270 km) has been proved, without presenting crosstalk between the sensors. The use of coherence multiplexing together with a random distributed feedback fiber laser addresses two of the main limitations of long-range sensing setups: their limited multiplexing capability and the need to reach the maximum monitoring distance.