Díaz Lucas, Silvia
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Díaz Lucas
First Name
Silvia
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
13 results
Search Results
Now showing 1 - 10 of 13
Publication Open Access Route towards a label-free optical waveguide sensing platform based on lossy mode resonances(IFSA Publishing, 2019) Ruiz Zamarreño, Carlos; Zubiate Orzanco, Pablo; Ozcariz Celaya, Aritz; Elosúa Aguado, César; Socorro Leránoz, Abián Bentor; Urrutia Azcona, Aitor; López Torres, Diego; Acha Morrás, Nerea de; Ascorbe Muruzabal, Joaquín; Vitoria Pascual, Ignacio; Imas González, José Javier; Corres Sanz, Jesús María; Díaz Lucas, Silvia; Hernáez Sáenz de Zaitigui, Miguel; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Del Villar, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua,0011-1365-2017- 000117; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26According to recent market studies of the North American company Allied Market Research, the field of photonic sensors is an emerging strategic field for the following years and it is expected to garner $18 billion by 2021. The integration of micro and nanofabrication technologies in the field of sensors has allowed the development of new technological concepts such as lab-on-a-chip which have achieved extraordinary advances in terms of detection and applicability, for example in the field of biosensors. This continuous development has allowed that equipment consisting of many complex devices that occupied a whole room a few years ago, at present it is possible to handle them in the palm of the hand; that formerly long duration processes are carried out in a matter of milliseconds and that a technology previously dedicated solely to military or scientific uses is available to the vast majority of consumers. The adequate combination of micro and nanostructured coatings with optical fiber sensors has permitted us to develop novel sensing technologies, such as the first experimental demonstration of lossy mode resonances (LMRs) for sensing applications, with more than one hundred citations and related publications in high rank journals and top conferences. In fact, fiber optic LMR-based devices have been proven as devices with one of the highest sensitivity for refractometric applications. Refractive index sensitivity is an indirect and simple indicator of how sensitive the device is to chemical and biological species, topic where this proposal is focused. Consequently, the utilization of these devices for chemical and biosensing applications is a clear opportunity that could open novel and interesting research lines and applications as well as simplify current analytical methodologies. As a result, on the basis of our previous experience with LMR based sensors to attain very high sensitivities, the objective of this paper is presenting the route for the development of label-free optical waveguide sensing platform based on LMRs that enable to explore the limits of this technology for bio-chemosensing applications.Publication Open Access Long-range hybrid network with point and distributed Brillouin sensors using Raman amplification(Optical Society of America, 2010) Zornoza Indart, Ander; Pérez Herrera, Rosa Ana; Elosúa Aguado, César; Díaz Lucas, Silvia; Bariáin Aisa, Cándido; Loayssa Lara, Alayn; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaWe propose a novel concept for hybrid networks that combine point and distributed Brillouin sensors in a cost-effective architecture that also deploys remote distributed Raman amplification to extend the sensing range. A 46-km proof-of-concept network is experimentally demonstrated integrating point vibration sensors based on fiber Bragg gratings and tapers with distributed temperature sensing along the network bus. In this network the use of Raman amplification to compensate branching and fiber losses provides a temperature resolution of 0.7°C and 13 m. Moreover, it was possible to obtain good optical signal to noise ratio in the measurements from the four point vibration sensors that were remotely multiplexed in the network. These low-cost intensity sensors are able to measure vibrations in the 0.1 to 50 Hz frequency range, which are important in the monitoring of large infrastructures such as pipelines.Publication Open Access All fiber interferometer for ice detection(Optica Publishing Group, 2018) Arozarena Arana, Jesús Antonio; Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Díaz Lucas, Silvia; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISCThis work presents an etched single-mode - multimode - single-mode structure that detects the solid-to-liquid change of state of the water due to an increased refractive index sensitivity within the 1.308 - 1.321 RIU rangePublication Open Access Monitoring the etching process in LPFGs towards development of highly sensitive sensors(MDPI, 2017) Del Villar, Ignacio; Cruz, José Luis; Socorro Leránoz, Abián Bentor; Díaz Lucas, Silvia; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica y Electrónica; Gobierno de Navarra / Nafarroako Gobernua: 2016/PI008; Gobierno de Navarra / Nafarroako Gobernua: 2016/PC025; Gobierno de Navarra / Nafarroako Gobernua: 2016/PC026In this work, the monitoring of the etching process up to a diameter of 30 µm of two LPFG structures has been compared, one of them had initially 125 µm, whereas the second one had 80 µm. By tracking the wavelength shift of the resonance bands during the etching process it is possible to check the quality of etching process (the 80 µm fibre performs better than de 125 µm fibre), and to stop for a specific cladding mode coupling, which permits to obtain an improved sensitivity compared to the initial structure.Publication Open Access Stable multi-wavelength erbium fiber ring laser with optical feedback for remote sensing(IEEE / OSA, 2015) Díaz Lucas, Silvia; Leandro González, Daniel; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn this work, we demonstrate a stable fiber sensing system for remote temperature measurements, where the sensing element is an array of four fiber Bragg gratings (FBGs) and sensor interrogation is achieved with a multi-wavelength erbium fiber ring laser. By introducing a feedback fiber loop in a fiber ring cavity, four laser emission lines were obtained simultaneously in single-longitudinal mode operation (SLM). The power instability obtained was lower than 0.5 dB with an optical signal-to-noise ratio (OSNR) higher than 50 dB for all the emitted wavelengths. The application of this system for remote temperature measurements has been demonstrated even though the SLM regime cannot be preserved.Publication Open Access Sensitivity enhancement in low cutoff wavelength long-period fiber gratings by cladding diameter reduction(MDPI, 2017) Del Villar, Ignacio; Partridge, Matthew; Rodríguez Rodríguez, Wenceslao Eduardo; Fuentes Lorenzo, Omar; Socorro Leránoz, Abián Bentor; Díaz Lucas, Silvia; Corres Sanz, Jesús María; James, Stephen; Tatam, Ralph; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Gobierno de Navarra / Nafarroako Gobernua: 2017/PI044The diameter of long-period fiber gratings (LPFGs) fabricated in optical fibers with a low cutoff wavelength was be reduced by hydrofluoric acid etching, enhancing the sensitivity to refractive index by more than a factor of 3, to 2611 nm/refractive index unit in the range from 1.333 to 1.4278. The grating period selected for the LPFGs allowed access to the dispersion turning point at wavelengths close to the visible range of the optical spectrum, where optical equipment is less expensive. As an example of an application, a pH sensor based on the deposition of a polymeric coating was analyzed in two situations: with an LPFG without diameter reduction and with an LPFG with diameter reduction. Again, a sensitivity increase of a factor of near 3 was obtained, demonstrating the ability of this method to enhance the sensitivity of thin-film-coated LPFG chemical sensors.Publication Open Access Temperature sensor using a multiwavelength erbium-doped fiber ring laser(Hindawi, 2017) Díaz Lucas, Silvia; San Fabián García, Noé; Socorro Leránoz, Abián Bentor; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaA novel temperature sensor is presented based on a multiwavelength erbium-doped fiber ring laser.The laser is comprised of fiber Bragg grating reflectors as the oscillation wavelength selecting filters.The performance of the temperature sensor in terms of both wavelength and laser output power was investigated, as well as the application of this systemfor remote temperaturemeasurements.Publication Open Access Multimode – coreless – multimode fiber-based sensors: theoretical and experimental study(IEEE, 2019) San Fabián García, Noé; Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Díaz Lucas, Silvia; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThis paper presents a complete study on the spectral behavior of a multimode-coreless-multimode fiber-optic structure, as well as its application as a refractometer and a liquid level sensor. The combination of two standard multimode fibers fused to a coreless fiber segment allows generating narrow interferometric bands in the optical spectrum, whose sensitivity can be improved by an adequate selection of the dimensions of the device (the coreless segment length and the diameter of the sensing area). A second way to improve the performance of the device is to deposit a thin film of SnO2, which allows increasing the sensitivity up to 314 nm/RIU. This widens the number of applications where this structure can be used. As an example, a liquid level sensor with 0.73 nm/mm sensitivity is presented.Publication Open Access 46-km-long Raman amplified hybrid double-bus network with point and distributed Brillouin sensors(IEEE, 2012) Fernández Vallejo, Montserrat; Olier Aguado, David; Zornoza Indart, Ander; Pérez Herrera, Rosa Ana; Díaz Lucas, Silvia; Elosúa Aguado, César; Bariáin Aisa, Cándido; Loayssa Lara, Alayn; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaWe experimentally demonstrate a 46-km hybrid network that combine point and distributed Brillouin sensors. The proposed sensor network multiplexes low-cost intensity point sensors based on fiber-optic tapers, which are able to measure vibrations in the 0.01 to 50 Hz frequency range. The sensor network with a double-bus is a low noise configuration, which offers a higher optical signal to noise ratio and dynamic range than a single-bus. Thus, the number of sensors to be multiplexed could increase or we could reach further distances. The system also deploys remote distributed Raman amplification to extend the sensing range.Publication Open Access Dual-wavelength single-longitudinal-mode erbium fiber laser for temperature measurements(SPIE, 2014) Díaz Lucas, Silvia; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA dual-wavelength erbium fiber laser with single-longitudinal-mode characteristic is proposed and demonstrated. The system uses a 7-m-long highly doped erbium-doped fiber as the primary gain medium while two fiber Bragg gratings (FBGs) act as a wavelength selection mechanism. The sensing capability of the FBGs gives this source the possibility to be also used in a dual-sensor multiplexing scheme. The system is very stable and suitable for sensor multiplexing.