Arana Navarro, Ana

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Arana Navarro

First Name

Ana

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Molecular traceability of beef from synthetic Mexican bovine breeds
    (FUNPEC-RP, 2011) Rodríguez Ramírez, R.; Arana Navarro, Ana; Alfonso Ruiz, Leopoldo; González Córdova, A. F.; Torrescano, G.; Guerrero Legarreta, I.; Vallejo Córdoba, B.; Producción Agraria; Nekazaritza Ekoizpena
    Traceability ensures a link between carcass, quarters or cuts of beef and the individual animal or the group of animals from which they are derived. Meat traceability is an essential tool for successful identification and recall of contaminated products from the market during a food crisis. Meat traceability is also extremely important for protection and value enhancement of good-quality brands. Molecular meat traceability would allow verification of conventional methods used for beef tracing in synthetic Mexican bovine breeds. We evaluated a set of 11 microsatellites for their ability to identify animals belonging to these synthetic breeds, Brangus and Charolais/Brahman (78 animals). Seven microsatellite markers allowed sample discrimination with a match probability, defined as the probability of finding two individuals sharing by chance the same genotypic profile, of 10-8. The practical application of the marker set was evaluated by testing eight samples from carcasses and pieces of meat at the slaughterhouse and at the point of sale. The DNA profiles of the two samples obtained at these two different points in the productioncommercialization chain always proved that they came from the same animal.
  • PublicationOpen Access
    Adiposity and adipogenic gene expression in four different muscles in beef cattle
    (Public Library of Science, 2017) Martínez del Pino, Lara; Arana Navarro, Ana; Alfonso Ruiz, Leopoldo; Mendizábal Aizpuru, José Antonio; Soret Lafraya, Beatriz; Producción Agraria; Nekazaritza Ekoizpena
    Anatomical site and divergent functionalities of muscles can be related to differences in IMF content, metabolism and adipogenic gene expression. Then, potential differences in different muscles in beef cattle were studied. As a second objective, the main sources of experimental variability associated to RT-qPCR results were analyzed following a nested design in order to implement appropriate experimental designs minimizing gene expression variability. To perform the study Longissimus thoracis (LT), Semitendinosus (SM), Masseter (MS), Sternomandibularis (ST) and subcutaneous adipose tissue (SAT) samples of Pirenaica young bulls (n = 4) were collected for IMF, collagen and protein quantification, analysis of adipocyte size distribution and gene expression (PPARG, CEBPA, FAPB4 and WNT10B). A greater IMF content was observed in MS and SM muscles, which had a bimodal adipocyte size distribution while it was unimodal in the muscles LT and ST. This suggest that the different IMF accretion in the muscles studied might be related to different rates of hyperplasia and hypertrophy and that IMF might develop later in LT and ST muscles. The former differences were not mirrored by the expression of the genes analyzed, which might be related to the different contribution of mature and non-mature adipocytes to the total gene expression. When comparing IMF and SAT gene expression, late and early developing tissues respectively, expression of PPARG, CEBPA and FABP4 was higher in the SAT, in agreement with bigger cell size and numbers. The variability study indicates that the analytical factors that add higher variability to the gene expression are the sampling and RT and therefore, it would be appropriate to include those replicates in the design of future experiments. Based on the results, the use of MS and SM muscles could allow less expensive experimental designs and bigger sample size that could permit the detection of lower relevant differences in gene expression.
  • PublicationOpen Access
    Effects of addition of linseed and marine algae to the diet on adipose tissue development, fatty acid profile, lipogenic gene expression, and meat quality in lambs
    (Public Library of Science, 2016) Urrutia Vera, Olaia; Mendizábal Aizpuru, José Antonio; Insausti Barrenetxea, Kizkitza; Soret Lafraya, Beatriz; Purroy Unanua, Antonio; Arana Navarro, Ana; Producción Agraria; Nekazaritza Ekoizpena
    This study examined the effect of linseed and algae on growth and carcass parameters, adipocyte cellularity, fatty acid profile and meat quality and gene expression in subcutaneous and intramuscular adipose tissues (AT) in lambs. After weaning, 33 lambs were fed three diets up to 26.7 ± 0.3 kg: Control diet (barley and soybean); L diet (barley, soybean and 10% linseed) and L-A diet (barley, soybean, 5% linseed and 3.89% algae). Lambs fed L-A diet showed lower average daily gain and greater slaughter age compared to Control and L (P < 0.001). Carcass traits were not affected by L and L-A diets, but a trend towards greater adipocyte diameter was observed in L and L-A in the subcutaneous AT (P = 0.057). Adding either linseed or linseed and algae increased α-linolenic acid and eicosapentaenoic acid contents in both AT (P < 0.001); however, docosahexaenoic acid was increased by L-A (P < 0.001). The n-6/n-3 ratio decreased in L and L-A (P < 0.001). Algae had adverse effects on meat quality, with greater lipid oxidation and reduced ratings for odor and flavor. The expression of lipogenic genes was downregulated in the subcutaneous AT (P < 0.05): acetyl-CoA carboxylase 1 (ACACA) in L and L-A and lipoprotein lipase (LPL) and stearoyl-CoA desaturase (SCD) in L-A. Fatty acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2) and fatty acid elongase 5 (ELOVL5) were unaffected. In the subcutaneous AT, supplementing either L or L-A increased peroxisome proliferator-activated receptor gamma (PPARG) and CAAT-enhancer binding protein alpha (CEBPA) (P < 0.05), although it had no effect on sterol regulatory element-binding factor 1 (SREBF1). In the intramuscular AT, expression of ACACA, SCD, FADS1 and FADS2 decreased in L and L-A (P < 0.001) and LPL in L (P < 0.01), but PPARG, CEBPA and SREBF1 were unaffected.