Person:
Merchán Elena, Daniel

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Merchán Elena

First Name

Daniel

person.page.departamento

Proyectos e Ingeniería Rural

person.page.instituteName

ORCID

person.page.upna

811294

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Dissolved solids and suspended sediment dynamics from five small agricultural watersheds in Navarre, Spain: a 10-year study
    (Elsevier, 2019) Merchán Elena, Daniel; Luquin Oroz, Eduardo Adrián; Hernández García, Iker; Campo-Bescós, Miguel; Giménez Díaz, Rafael; Casalí Sarasíbar, Javier; Valle de Lersundi, Jokin del; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Dissolved solids (DS) and suspended sediment (SS) loads are considered relevant environmental problems. They are related to a wide range of on-site and off-site impacts, such as soil erosion or salinization of water bodies. In this study, the dynamics of DS and SS concentrations and loads were assessed in five small watersheds covering representative agricultural land uses in Navarre (Spain). To this end, discharge, DS and SS concentration data were collected during ten hydrological years at each watershed outlet, and loads were computed from discharge and concentration values. DS concentration followed a seasonal pattern imposed by the availability of water, with higher concentrations recorded in low-flow periods and lower concentration in the high-flow period. SS concentration was extremely variable, with a range of 2–4 orders of magnitude in concentration for any specific discharge. Temporal variations (both intra- and inter-annual) in DS loads were explained by differences in runoff, whereas those of SS were not, being the SS loads associated mainly with specific high flow events. These temporal patterns were observed for both agricultural (this study) and non-agricultural (literature) watersheds. From the data in the Navarrese watersheds and those available in the literature, we inferred that agricultural land use, in general, tends to increase the concentration of both DS and SS. Regarding DS and SS yields, the effects of agricultural land use on DS yields are controlled by the changes in runoff rather than the (small) changes in DS concentration. In this sense, land uses changes expected to increase runoff (i.e., a shift from forested to arable or from rainfed to irrigated agriculture) would increase DS yields. On the other hand, agricultural land use tends to increase SS yields, although the effect is highly variable depending on site-specific factors, both natural (e.g., watershed shape) and anthropogenic (e.g., degree of soil conservation practices). In the Navarrese watersheds, DS yields ranged from 1.1 to 2.2 Mg ha−1 year−1 whereas SS yields ranged from 0.3 to 4.3 Mg ha−1 year−1. DS yields seem to dominate under non-agricultural conditions and in most agricultural land uses at the small watershed scale. On the other hand, SS yields dominate in watersheds with increased soil erosion as a consequence of arable land use over erosion-prone watersheds.
  • PublicationOpen Access
    Irrigation implementation promotes increases in salinity and nitrate concentration in the lower reaches of the Cidacos River (Navarre, Spain)
    (Elsevier, 2020) Merchán Elena, Daniel; Sanz, L.; Alfaro, A.; Pérez, I.; Goñi Garatea, Mikel; Solsona, F.; Hernández García, Iker; Pérez, C.; Casalí Sarasíbar, Javier; Ingeniería; Ingeniaritza
    The shift from rainfed to irrigated agriculture is associated with a change in the fertilization rates due to increases in expected production and the fact of growing more N demanding crops. In addition, the circulation of irrigation return flows (IRF) mobilizes soluble salts stored in soils or geological materials. As a consequence, it implies severe modifications in the dynamics and total amount of soluble salts and nitrogen exported, especially in semi-arid watersheds. In this study, long-term data collected by the regional authorities was used to assess the effects of irrigation implementation on salinity (using electrical conductivity, EC, as a proxy) and nitrate concentration (NO3 −) after the transformation of ca. 77 km2 from rainfed to irrigated agriculture in the Cidacos River (CR) watershed. The results indicate that water quality in the lower reaches of the CR was significantly modified after the diffuse incorporation of IRF. In contrast, neither EC nor NO3 − were different in those monitoring stations whose contributing watersheds did not include transformed area. In addition, the temporal dynamics in the analysed variables shifted from a rainfed land signal typical in the region to an irrigated land signal, and the hydrochemical type of the CR shifted from mixed-to-Na+-mixed-to-HCO3 – to mostly Na+-mixed type, typical of waters affected by IRF in the region. Groundwater EC and NO3 − also increased in those wells located within the irrigated area. Although there are great uncertainties in the actual amount of salt and N reaching the CR via IRF, the expected contribution of waste water spilled into the CR is minor in comparison to other sources, mostly agricultural sources in the case of N. The observed changes have promoted the designation of the lower reaches of the CR as 'affected' by NO3 − pollution, and the whole CR watershed as a Nitrate Vulnerable Zone, with the emergent question about whether irrigation implementation as carried out currently in Spain is against the environmental objectives of the Water Framework Directive.
  • PublicationOpen Access
    Assessment of the main factors affecting the dynamics of nutrients in two rainfed cereal watersheds
    (Elsevier, 2020) Hernández García, Iker; Merchán Elena, Daniel; Aranguren Erice, Itxaso; Casalí Sarasíbar, Javier; Giménez Díaz, Rafael; Campo-Bescós, Miguel; Valle de Lersundi, Jokin del; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería
    Nutrient dynamics and factors that control nutrient exports were observed in two watersheds, namely Latxaga and La Tejería, with similar climatic and management characteristics throughout 10 years (2007–2016). Similar patterns were observed in intra-annual and inter-annual dynamics with higher NO3 − concentration and NO3 −-N yield during the humid seasons (i.e., winters and hydrological year 2013). Regarding concentration, Latxaga showed a higher decrease of nitrate due to a higher development of vegetated areas. High discharge events produced nitrate dilution due to the presence of tile-drainage at La Tejeria. At Latxaga, where tile-drainage was not observed, an increase in concentration occurred as a response to high discharge events. Comparing both watersheds, La Tejería presented ca. 73 ± 25 mg NO3 − L−1 while at Latxaga, the concentration observed was almost three times lower, with ca. 21 ± 15 mg NO3 − L−1 throughout the study period. Similar patterns were observed for the NO3 −-N yield, with 32 kg NO3 −-N ha−1 year−1 and 17 kg NO3 −-N ha−1 year−1 at La Tejería and Latxaga, respectively. Regarding phosphorous, the observed concentrations were 0.20 ± 0.72 mg PO4 3− L−1 and 0.06 ± 0.38 mg PO4 3− L−1 at La Tejería and Latxaga, respectively, with PO4 3−-P yields being 71 kg PO4 3−-P ha−1 year−1 and 33 kg PO4 3−-P ha−1 year−1. Annual phosphate-P yield distribution in both watersheds followed similar patterns to those observed for the nitrate-N yield, with higher yields in the humid season. Regarding concentration, highly erosive rainfall that occurred in summer, mobilizing sediments and probably generating desorption of phosphorous in the stream channel, increased phosphate concentration. This research adds to the knowledge base regarding the dynamics of nutrients and the controlling factors in complex agricultural systems with Mediterranean characteristics.