Merchán Elena, Daniel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Merchán Elena
First Name
Daniel
person.page.departamento
Proyectos e Ingeniería Rural
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Irrigation implementation promotes increases in salinity and nitrate concentration in the lower reaches of the Cidacos River (Navarre, Spain)(Elsevier, 2020) Merchán Elena, Daniel; Sanz, L.; Alfaro, A.; Pérez, I.; Goñi Garatea, Mikel; Solsona, F.; Hernández García, Iker; Pérez, C.; Casalí Sarasíbar, Javier; Ingeniería; IngeniaritzaThe shift from rainfed to irrigated agriculture is associated with a change in the fertilization rates due to increases in expected production and the fact of growing more N demanding crops. In addition, the circulation of irrigation return flows (IRF) mobilizes soluble salts stored in soils or geological materials. As a consequence, it implies severe modifications in the dynamics and total amount of soluble salts and nitrogen exported, especially in semi-arid watersheds. In this study, long-term data collected by the regional authorities was used to assess the effects of irrigation implementation on salinity (using electrical conductivity, EC, as a proxy) and nitrate concentration (NO3 −) after the transformation of ca. 77 km2 from rainfed to irrigated agriculture in the Cidacos River (CR) watershed. The results indicate that water quality in the lower reaches of the CR was significantly modified after the diffuse incorporation of IRF. In contrast, neither EC nor NO3 − were different in those monitoring stations whose contributing watersheds did not include transformed area. In addition, the temporal dynamics in the analysed variables shifted from a rainfed land signal typical in the region to an irrigated land signal, and the hydrochemical type of the CR shifted from mixed-to-Na+-mixed-to-HCO3 – to mostly Na+-mixed type, typical of waters affected by IRF in the region. Groundwater EC and NO3 − also increased in those wells located within the irrigated area. Although there are great uncertainties in the actual amount of salt and N reaching the CR via IRF, the expected contribution of waste water spilled into the CR is minor in comparison to other sources, mostly agricultural sources in the case of N. The observed changes have promoted the designation of the lower reaches of the CR as 'affected' by NO3 − pollution, and the whole CR watershed as a Nitrate Vulnerable Zone, with the emergent question about whether irrigation implementation as carried out currently in Spain is against the environmental objectives of the Water Framework Directive.Publication Open Access Shifts in crane migration phenology associated with climate change in Southwestern Europe(Resilience Alliance, 2020) Orellana Macías, J. M.; Bautista, Luis M.; Merchán Elena, Daniel; Causapé, Jesús; Alonso, Juan Carlos; Ingeniería; IngeniaritzaGallocanta lagoon, NE Spain, is one of the main stopover and wintering areas of Common Cranes (Grus grus) migrating through Western Europe. We investigated how the water level of the lagoon where cranes roost, precipitation, and air temperature might have influenced the species’ migration and wintering patterns in this area between 1973 and 2018. Over the study period, the mean annual air temperature increased at 0.3 °C per decade. Simultaneously, cranes advanced the spring peak migration date at a rate of 0.37 days/year. Water level and rainfall during spring were also positively correlated with the date of spring migration peak. Because cranes need shallow water to roost, and must drink water from streams because the lagoon is saline, these correlations suggest that low water levels at roosting sites and drinking water shortage may have further accelerated the onset of northward spring migration. The water level was also positively correlated with peak crane numbers in autumn, suggesting that the roosting capacity of the lagoon may limit numbers of cranes that can stopover in the area. We conclude that global warming, variations in the water level of the lagoon, and precipitation during spring have determined changes in the use of Gallocanta as a staging and wintering area by Common Cranes during the last decades. Because climatic models predict further decreases in rainfall and higher temperatures in the area, further advances in the migration phenology of cranes should be expected, which might also have implications for the conservation and management of the species and the study area.Publication Open Access Assessment of the main factors affecting the dynamics of nutrients in two rainfed cereal watersheds(Elsevier, 2020) Hernández García, Iker; Merchán Elena, Daniel; Aranguren Erice, Itxaso; Casalí Sarasíbar, Javier; Giménez Díaz, Rafael; Campo-Bescós, Miguel; Valle de Lersundi, Jokin del; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; IngenieríaNutrient dynamics and factors that control nutrient exports were observed in two watersheds, namely Latxaga and La Tejería, with similar climatic and management characteristics throughout 10 years (2007–2016). Similar patterns were observed in intra-annual and inter-annual dynamics with higher NO3 − concentration and NO3 −-N yield during the humid seasons (i.e., winters and hydrological year 2013). Regarding concentration, Latxaga showed a higher decrease of nitrate due to a higher development of vegetated areas. High discharge events produced nitrate dilution due to the presence of tile-drainage at La Tejeria. At Latxaga, where tile-drainage was not observed, an increase in concentration occurred as a response to high discharge events. Comparing both watersheds, La Tejería presented ca. 73 ± 25 mg NO3 − L−1 while at Latxaga, the concentration observed was almost three times lower, with ca. 21 ± 15 mg NO3 − L−1 throughout the study period. Similar patterns were observed for the NO3 −-N yield, with 32 kg NO3 −-N ha−1 year−1 and 17 kg NO3 −-N ha−1 year−1 at La Tejería and Latxaga, respectively. Regarding phosphorous, the observed concentrations were 0.20 ± 0.72 mg PO4 3− L−1 and 0.06 ± 0.38 mg PO4 3− L−1 at La Tejería and Latxaga, respectively, with PO4 3−-P yields being 71 kg PO4 3−-P ha−1 year−1 and 33 kg PO4 3−-P ha−1 year−1. Annual phosphate-P yield distribution in both watersheds followed similar patterns to those observed for the nitrate-N yield, with higher yields in the humid season. Regarding concentration, highly erosive rainfall that occurred in summer, mobilizing sediments and probably generating desorption of phosphorous in the stream channel, increased phosphate concentration. This research adds to the knowledge base regarding the dynamics of nutrients and the controlling factors in complex agricultural systems with Mediterranean characteristics.Publication Open Access Evolution and assessment of a nitrate vulnerable zone over 20 years: Gallocanta groundwater body (Spain)(Springer, 2020) Orellana Macías, J. M.; Merchán Elena, Daniel; Causapé, Jesús; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; IngenieríaNitrate pollution from agricultural sources is one of the biggest issues facing groundwater management in the European Union (EU). During the last three decades, tens of nitrate vulnerable zones (NVZ) have been designated across the EU, aiming to make the problem more manageable. The Gallocanta Groundwater Body in NE Spain was declared as an NVZ in 1997, and after more than 20 years, significant improvements in water quality were expected to be observed. In the present study, the spatiotemporal trend of nitrate concentration within the Gallocanta NVZ in the last 38 years was assessed, and the effectiveness of the NVZ implementation was tested. Data from the official Ebro Basin Confederation monitoring network from 1980 to 2018 were used, and the results showed an increasing but fluctuating trend in nitrate concentration since 1980. Although a slight improvement was detected after the NVZ designation in 1997, the low rate of improvement would take decades to reach desirable levels in most of the area. The lack of update and control of action programmes, the inappropriate NVZ delimitation, and the influence of natural factors seem to be the reasons for the failure of the nitrate reduction measures. Currently, nitrate pollution and groundwater management are a matter of concern for the EU, so given the recurring problems in water supply in the area and the nonfulfillment of the goal of good quality status, more demanding measures are needed to be implemented in the short term.