Urrestarazu Vidart, Jorge
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Urrestarazu Vidart
First Name
Jorge
person.page.departamento
Agronomía, Biotecnología y Alimentación
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level(BioMed Central, 2016) Urrestarazu Vidart, Jorge; Denancé, Caroline; Ravon, Elisa; Guyader, Arnaud; Guisnel, Rémi; Feugey, Laurence; Poncet, Charles; Lateur, Marc; Houben, Patrick; Ordidge, Matthew; Fernández Fernández, Felicidad; Evans, Kate M.; Paprstein, Frantisek; Sedlak, Jiri; Nybom, Hilde; Garkava Gustavsson, Larisa; Miranda Jiménez, Carlos; Gassmann, Jennifer; Kellerhals, Markus; Suprun, Ivan; Pikunova, Anna V.; Krasova, Nina G.; Torutaeva, Elnura; Dondini, Luca; Tartarini, Stefano; Laurens, François; Durel, Charles Eric; Producción Agraria; Nekazaritza EkoizpenaBackground: The amount and structure of genetic diversity in dessert apple germplasm conserved at a European level is mostly unknown, since all diversity studies conducted in Europe until now have been performed on regional or national collections. Here, we applied a common set of 16 SSR markers to genotype more than 2,400 accessions across 14 collections representing three broad European geographic regions (North + East, West and South) with the aim to analyze the extent, distribution and structure of variation in the apple genetic resources in Europe. Results: A Bayesian model-based clustering approach showed that diversity was organized in three groups, although these were only moderately differentiated (FST = 0.031). A nested Bayesian clustering approach allowed identification of subgroups which revealed internal patterns of substructure within the groups, allowing a finer delineation of the variation into eight subgroups (FST = 0.044). The first level of stratification revealed an asymmetric division of the germplasm among the three groups, and a clear association was found with the geographical regions of origin of the cultivars. The substructure revealed clear partitioning of genetic groups among countries, but also interesting associations between subgroups and breeding purposes of recent cultivars or particular usage such as cider production. Additional parentage analyses allowed us to identify both putative parents of more than 40 old and/or local cultivars giving interesting insights in the pedigree of some emblematic cultivars. Conclusions: The variation found at group and subgroup levels may reflect a combination of historical processes of migration/selection and adaptive factors to diverse agricultural environments that, together with genetic drift, have resulted in extensive genetic variation but limited population structure. The European dessert apple germplasm represents an important source of genetic diversity with a strong historical and patrimonial value. The present work thus constitutes a decisive step in the field of conservation genetics. Moreover, the obtained data can be used for defining a European apple core collection useful for further identification of genomic regions associated with commercially important horticultural traits in apple through genome-wide association studies.Publication Open Access Evaluating the influence of the microsatellite marker set on the genetic structure inferred in Pyrus communis L.(Public Library of Science, 2015) Urrestarazu Vidart, Jorge; Royo Díaz, José Bernardo; Santesteban García, Gonzaga; Miranda Jiménez, Carlos; Producción Agraria; Nekazaritza EkoizpenaFingerprinting information can be used to elucidate in a robust manner the genetic structure of germplasm collections, allowing a more rational and fine assessment of genetic resources. Bayesian model-based approaches are nowadays majorly preferred to infer genetic structure, but it is still largely unresolved how marker sets should be built in order to obtain a robust inference. The objective was to evaluate, in Pyrus germplasm collections, the influence of the SSR marker set size on the genetic structure inferred, also evaluating the influence of the criterion used to select those markers. Inferences were performed considering an increasing number of SSR markers that ranged from just two up to 25, incorporated one at a time into the analysis. The influence of the number of SSR markers used was evaluated comparing the number of populations and the strength of the signal detected, and also the similarity of the genotype assignments to populations between analyses. In order to test if those results were influenced by the criterion used to select the SSRs, several choosing scenarios based on the discrimination power or the fixation index values of the SSRs were tested. Our results indicate that population structure could be inferred accurately once a certain SSR number threshold was reached, which depended on the underlying structure within the genotypes, but the method used to select the markers included on each set appeared not to be very relevant. The minimum number of SSRs required to provide robust structure inferences and adequate measurements of the differentiation, even when low differentiation levels exist within populations, was proved similar to that of the complete list of recommended markers for fingerprinting. When a SSR set size similar to the minimum marker sets recommended for fingerprinting it is used, only major divisions or moderate (FST>0.05) differentiation of the germplasm are detected.