Lafuente Adiego, Marta

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Lafuente Adiego

First Name

Marta

person.page.departamento

Ciencias

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Wettability control on microstructured polypropylene surfaces by means of O2 plasma
    (Wiley, 2017) Lafuente Adiego, Marta; Martínez, Elena; Pellejero, Ismael; Artal, María del Carmen; Pina, María del Pilar; Institute for Advanced Materials and Mathematics - INAMAT2
    Durable and wear resistant polypropylene surfaces with static contact angle (SCA) above 140° have been fabricated using standard photolithographic process and O2 plasma etching followed by thermal annealing at 100 °C. This microfabrication process leads to a hierarchical topography derived from the patterned microstructures and the sub‐micron roughness caused by plasma. Hydrophobicity (SCA up to 145°) remained over 14 months after fabrication. This wetting behavior is attributed to the combination of the periodic array of micro‐sized pillars with low aspect‐ratio and the submicron roughness caused by O2 plasma.
  • PublicationOpen Access
    Highly sensitive SERS quantification of organophosphorous chemical warfare agents: a major step towards the real time sensing in the gas phase
    (Elsevier, 2018) Lafuente Adiego, Marta; Pellejero, Ismael; Sebastián, Víctor; Urbiztondo, Miguel A.; Mallada, Reyes; Institute for Advanced Materials and Mathematics - INAMAT2
    A surface-enhanced Raman scattering (SERS)-based sensor was developed for the label-free real-time gas phase detection of dimethyl methylphosphonate (DMMP); a surrogate molecule of the G-series nerve agents which are of particular concern due to its extreme toxicity, persistence and previous deployment. The SERS platform was designed using simple elements (Au nano-particles) coated with a citrate layer, and a self-assembly procedure that yields near- optimum distances among the nanoparticles. The citrate coating acts as an effective trap of the target molecules on the immediate vicinity of the Au nanoparticle surface under ambient conditions by reversible hydrogen bonding type interactions. For the first time, we have been able to detect sub-ppm concentrations of DMMP in gas phase (130 parts-per-billion), as might be found on potential emergency scenarios. The high sensitivity, simple preparation and reusability of the SERS platforms developed in this work open up the way for immediate detection of chemical warfare agents in realistic scenarios.