Díaz de Garayo, Sergio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Díaz de Garayo
First Name
Sergio
person.page.departamento
Ingeniería
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Annual energy performance of a thermoelectric heat pump combined with a heat recovery unit to HVAC one passive house dwelling(Elsevier, 2022) Díaz de Garayo, Sergio; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCThis paper proposes a HVAC system that integrates a thermoelectric heat pump with a double flux ventilation system and a sensible heat recovery unit able to provide heating, cooling and ventilation to a 74.3 m2 Passive House certified dwelling in Pamplona (Spain). This study computationally investigates the energy performance of the system and the comfort conditions of the dwelling for one year long. The thermoelectric HVAC system maintains adequate comfort conditions with an indoor temperature between 20–23 °C in wintertime and 23–25 °C during summer, thanks to the precise control of the voltage supplied to the thermoelectric heat pump that can regulate the heating/cooling capacity from 5 to 100 %. The system consumes 1143.3 kWh/y (15.3 kWh/m2y) of electric energy, that can be provided by 4 photovoltaic panels of 250 Wp each. This system is then compared with a vapor compression heat pump with a COP of 4.5. The vapor compression system reduces the electric energy consumption by 36.1 % with respect to the thermoelectric system, which allows saving only 270 Wp (1–2 PV panels). This demonstrates the promising application of thermoelectricity for HVAC in passive houses.Publication Open Access Design and analysis of a two-stage cascade system for heating and hot water production in nearly zero-energy buildings using thermoelectric technology(MDPI, 2024-12-16) Ordóñez, Javier ; Díaz de Garayo, Sergio; Martínez Echeverri, Álvaro; Algarra Pérez, Fernando; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaThis paper proposes an innovative system that integrates two thermoelectric heat pumps (one air–water and the other water–water) with two thermal storage tanks at different temperatures to provide heating and domestic hot water to a 73.3 m2 passive-house-certified dwelling in Pamplona (Spain). The air–water thermoelectric heat pump extracts heat from the ambient air and provides heat to a tank at intermediate temperature, which supplies water to a radiant floor. The water–water heat pump takes heat from this tank and provides heat to the other tank, at higher temperature, which supplies domestic hot water. The system performance and comfort conditions are computationally analyzed during the month of January under the climate of Pamplona and under different European climates. The COP of the system lays between 1.3 and 1.7, depending on the climate, because of the low COP of the air–water thermoelectric heat pump. However, it is able to provide water for the radiant floor and to maintain the temperature of the dwelling above 20 °C 99.8% of the time. Moreover, it provides domestic hot water at a temperature above 43 °C 99.9% of the time. Noteworthy is the fact that the water–water heat pump presents a COP close to 4, which opens up the possibilities of working in combination with more efficient heat pumps for the first stage.Publication Open Access Thermoelectric heating and air conditioning with double flux ventilation in passive houses(2022) Díaz de Garayo, Sergio; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Ingeniería; Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako GobernuaEsta tesis propone el uso de bombas de calor basadas en termoelectricidad, cuyas ventajas competitivas se basan fundamentalmente en la ausencia de partes móviles y de refrigerantes. Concretamente, esta tesis se centra en el diseño y construcción de un dispositivo de bomba de calor air-aire integrado con la ventilación de doble flujo en viviendas con una superficie inferior a 100 m2 y una envolvente de alta eficiencia energética tipo ‘Passive House’, donde la reducida carga de calefacción (<10 W/m2) permite climatizar el espacio con el caudal de aire de ventilación, aprovechando el calor residual del aire renovado. Los resultados demuestran que la termolectricidad puede resultar una alternativa real a la construcción de bombas de calor para la climatización de viviendas ‘Passive House’, dada la gran cantidad de ventajas (sistema silencioso, robusto, diseño ligero y fácilmente instalable en techos falsos, fácil regulación, integrabilidad con instalaciones fotovoltaicas y potencial de ahorro en los costes de fabricación), comparado con su menor eficiencia, fácilmente compensable con el incremento de la producción fotovoltaica integrada en el edificio.Publication Open Access Prototype of an air to air thermoelectric heat pump integrated with a double flux mechanical ventilation system for passive houses(Elsevier, 2021) Díaz de Garayo, Sergio; Martínez Echeverri, Álvaro; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCThis paper describes the design of an air-to-air thermoelectric heat pump for its integration with a double flux mechanical ventilation system for domestic use in Passive House standard. The prototype has been built and thermally characterized in a test bench reproducing winter and summer conditions, with different gaps between indoor and outdoor temperatures. In addition, two different integration possibilities have been analyzed and tested: a stand-alone installation and the combination with a heat recovery unit. This prototype is composed of 10 thermoelectric modules and finned heat pipes to transfer the heat between the modules and the incoming and outgoing ventilation flows. The maximum heating capacity with 12 V supply was proven to be 1,250 W for heating and 375 W for cooling, with COPs ranging 1.5–4 and 0.5–2.5 respectively. Results show the variations in the performance of the thermoelectric heat pump depending on the voltage supply (3–12 V), the air flows (55–130 m3/h) and the temperature gaps between them. This paper demonstrates the convenience of combining passive and active heat recovery technologies (thermoelectric pump coupled to a heat recovery unit), bringing improvements on the thermal power higher than 25% for heating and 10% for cooling, with respect to the thermoelectric heat pump working directly between the incoming and outgoing air flows. The COP is also increased, especially for low energy demands, when the voltage is 3–6 V. In these cases, the COP might be improved by 50% for heating and 30% for cooling.