Barajas Vélez, Miguel Ángel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Barajas Vélez

First Name

Miguel Ángel

person.page.departamento

Ciencias de la Salud

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Comparison of 0.12% chlorhexidine and a new bone bioactive liquid, BBL, in mouthwash for oral wound healing: a randomized, double blind clinical human trial
    (MDPI, 2022) Ferrés‐Amat, Eduard; Al Madhoun, Ashraf; Ferrés-Amat, Elvira; Carrió, Neus; Barajas Vélez, Miguel Ángel; Al-Madhoun, Areej Said; Ferrés-Padró, Eduard; Marti, Carles; Atari, Maher; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, OTRI project, reference number 2020907094
    Following surgery, healing within the oral cavity occurs in a hostile environment, and proper oral care and hygiene are required to accelerate recovery. The aim of the current study is to investigate and compare the bioreactivity characteristics of mouthwashes based on either chlorhexidine (CHX) or a novel bone bioactive liquid (BBL) in terms of oral healing within seven days application post-surgery. A randomized, double blind clinical trial was conducted in 81 patients, wherein the mouthwashes were applied twice a day for a period of 7 days. The visual analog scale (VAS) protocol was applied to determine pain index scores. Early wound healing index (EHI) score was determined for evaluating oral cavity healing progress. No adverse effects were observed using the mouthwashes, but CHX application resulted in stained teeth. Applications of both CHX and BBL were sufficient to reduce pain over a period of 7 days. However, the BBL group demonstrated a statistically significant reduction in VAS scores starting on day 4. The EHI scores were significantly higher in the BBL group compared with the CHX group, independent of tooth location. No differences in either VAS or EHI scores due to gender were observed. Compared with the commercially available CHX mouthwash, application of the BBL mouthwash reduced pain and accelerated oral cavity healing to a greater extent, suggesting it effectively improves the oral cavity microenvironment at the wound site in mediating soft tissue regeneration.
  • PublicationOpen Access
    Histologic and histomorphometric evaluation of a new bioactive liquid bbl on implant surface: a preclinical study in foxhound dogs
    (MDPI, 2021) Ferrés‐Amat, Eduard; Al Madhoun, Ashraf; Ferrés-Amat, Elvira; Al Demour, Saddam; Ababneh, Mera A.; Ferrés-Padró, Eduard; Marti, Carles; Carrió, Neus; Barajas Vélez, Miguel Ángel; Atari, Maher; Ciencias de la Salud; Osasun Zientziak
    Background: bioactive chemical surface modifications improve the wettability and osse-ointegration properties of titanium implants in both animals and humans. The objective of this animal study was to investigate and compare the bioreactivity characteristics of titanium implants (BLT) pre‐treated with a novel bone bioactive liquid (BBL) and the commercially available BLT‐SLA active. Methods: forty BLT‐SLA titanium implants were placed in in four foxhound dogs. Animals were divided into two groups (n = 20): test (BLT‐SLA pre‐treated with BBL) and control (BLT‐SLA active) implants. The implants were inserted in the post extraction sockets. After 8 and 12 weeks, the animals were sacrificed, and mandibles were extracted, containing the implants and the surrounding soft and hard tissues. Bone‐to‐implant contact (BIC), inter‐thread bone area percentage (ITBA), soft tissue, and crestal bone loss were evaluated by histology and histomorphometry. Results: all animals were healthy with no implant loss or inflammation symptoms. All implants were clinically and histologically osseo‐integrated. Relative to control groups, test implants demon-strated a significant 1.5‐ and 1.7‐fold increase in BIC and ITBA values, respectively, at both assessment intervals. Crestal bone loss was also significantly reduced in the test group, as compared with controls, at week 8 in both the buccal crests (0.47 ± 0.32 vs 0.98 ± 0.51 mm, p < 0.05) and lingual crests (0.39* ± 0.3 vs. 0.89 ± 0.41 mm, p < 0.05). At week 12, a pronounced crestal bone loss improvement was observed in the test group (buccal, 0.41 ± 0.29 mm and lingual, 0.54 ± 0.23 mm). Tissue thickness showed comparable values at both the buccal and lingual regions and was significantly improved in the studied groups (0.82–0.92 mm vs. 33–48 mm in the control group). Conclusions: Relative to the commercially available BLT‐SLA active implants, BLT‐SLA pre‐treated with BBL showed improved histological and histomorphometric characteristics indicating a reduced titanium surface roughness and improved wettability, promoting healing and soft and hard tissue regeneration at the implant site.
  • PublicationOpen Access
    Randomized clinical trial: bone bioactive liquid improves implant stability and osseointegration
    (MDPI, 2024-10-01) Al Madhoun, Ashraf; Meshal, Khaled; Carrió, Neus; Ferrés‐Amat, Eduard; Ferrés-Amat, Elvira; Barajas Vélez, Miguel Ángel; Jiménez-Escobar, Ana Leticia; Al-Madhoun, Areej Said; Saber, Alaa; Abou Alsamen, Yazan; Marti, Carles; Atari, Maher; Ciencias de la Salud; Osasun Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Implant stability can be compromised by factors such as inadequate bone quality and infection, leading to potential implant failure. Ensuring implant stability and longevity is crucial for patient satisfaction and quality of life. In this multicenter, randomized, double-blind clinical trial, we assessed the impact of a bone bioactive liquid (BBL) on the Galaxy TS implant's performance, stability, and osseointegration. We evaluated the impact stability, osseointegration, and pain levels using initial stability quotient (ISQ) measurements, CBCT scans, and pain assessment post-surgery. Surface analysis was performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). In vitro studies examined the BBL's effects on dental pulp pluripotent stem cells' (DPPSCs') osteogenesis and inflammation modulation in human macrophages. All implants successfully osseointegrated, as demonstrated by the results of our clinical and histological studies. The BBL-treated implants showed significantly lower pain scores by day 7 (p < 0.00001) and improved stability by day 30 (ISQ > 62.00 ± 0.59, p < 8 × 10-7). By day 60, CBCT scans revealed an increased bone area ratio in BBL-treated implants. AFM images demonstrated the BBL's softening and wettability effect on implant surfaces. Furthermore, the BBL promoted DPPSCs' osteogenesis and modulated inflammatory markers in human primary macrophages. This study presents compelling clinical and biological evidence that BBL treatment improves Galaxy TS implant stability, reduces pain, and enhances bone formation, possibly through surface tension modulation and immunomodulatory effects. This advancement holds promise for enhancing patient outcomes and implant longevity.