Sánchez-Alarcos Gómez, Vicente
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Sánchez-Alarcos Gómez
First Name
Vicente
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Long-range atomic order and entropy change at the martensitic transformation in a Ni-Mn-In-Co metamagnetic shape memory alloy(MDPI, 2014) Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Pérez de Landazábal Berganzo, José Ignacio; Cesari, Eduard; Rodríguez Velamazán, José Alberto; Física; FisikaThe influence of the atomic order on the martensitic transformation entropy change has been studied in a Ni-Mn-In-Co metamagnetic shape memory alloy through the evolution of the transformation temperatures under high-temperature quenching and post-quench annealing thermal treatments. It is confirmed that the entropy change evolves as a consequence of the variations on the degree of L21 atomic order brought by thermal treatments, though, contrary to what occurs in ternary Ni-Mn-In, post-quench aging appears to be the most effective way to modify the transformation entropy in Ni-Mn-In-Co. It is also shown that any entropy change value between around 40 and 5 J/kgK can be achieved in a controllable way for a single alloy under the appropriate aging treatment, thus bringing out the possibility of properly tune the magnetocaloric effect.Publication Open Access Giant direct and inverse magnetocaloric effect linked to the same forward martensitic transformation(Springer Nature, 2017) Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Sánchez-Alarcos Gómez, Vicente; Beato López, Juan Jesús; Rodríguez Velamazán, José Alberto; Sánchez Marcos, J.; Gómez Polo, Cristina; Cesari, Eduard; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; FísicaMetamagnetic shape memory alloys have aroused considerable attraction as potential magnetic refrigerants due to the large inverse magnetocaloric effect associated to the magnetic-field-induction of a reverse martensitic transformation (martensite to austenite). In some of these alloys, the austenite phase can be retained on cooling under high magnetic fields, being the retained phase metastable after field removing. Here, we report a giant direct magnetocaloric effect linked to the anomalous forward martensitic transformation (austenite to martensite) that the retained austenite undergoes on heating. Under moderate fields of 10 kOe, an estimated adiabatic temperature change of 9 K has been obtained, which is (in absolute value) almost twice that obtained in the conventional transformation under higher applied fields. The observation of a different sign on the temperature change associated to the same austenite to martensite transformation depending on whether it occurs on heating (retained) or on cooling is attributed to the predominance of the magnetic or the vibrational entropy terms, respectively.