Sánchez-Alarcos Gómez, Vicente

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sánchez-Alarcos Gómez

First Name

Vicente

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Influence of defects on the irreversible phase transition in the Fe-Pd doped with Co and Mn
    (Rede Latino-Americana de Materiais, 2018) Bonifacich, Federico Guillermo; Lambri, Osvaldo Agustín; Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Sánchez-Alarcos Gómez, Vicente; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; Física; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The appearance of BCT martensite in Fe-Pd-based ferromagnetic shape memory alloys, which develops at lower temperatures than the thermoelastic martensitic transition, deteriorates the shape memory properties. In a previous work performed in Fe70Pd30, it was shown that a reduction in defects density reduces the non thermoelastic FCT-BCT transformation temperature. In the present work, the influence of quenched-in-defects upon the intensity and temperature of the thermoelastic martensitic (FCC-FCT) and the non thermoelastic (FCT-BCT) transitions in Fe-Pd doped with Co and Mn is studied. Differential scanning calorimetric and mechanical spectroscopy studies demonstrate that a reduction in the dislocation density the stability range of the FCC-FCT reversible transformation in Fe67Pd30Co3 and Fe66.8Pd30.7Mn2.5 ferromagnetic shape memory alloys.
  • PublicationOpen Access
    Influence of structural defects on the properties of metamagnetic shape memory alloys
    (MDPI, 2020) Pérez de Landazábal Berganzo, José Ignacio; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Lambri, Osvaldo Agustín; López García, Javier; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    The production of µ-particles of Metamagnetic Shape Memory Alloys by crushing and subsequent ball milling process has been analyzed. The high energy involved in the milling process induces large internal stresses and high density of defects with a strong influence on the martensitic transformation; the interphase creation and its movement during the martensitic transformation produces frictional contributions to the entropy change (exothermic process) both during forward and reverse transformation. The frictional contribution increases with the milling time as a consequence of the interaction between defects and interphases. The influence of the frictional terms on the magnetocaloric effect has been evidenced. Besides, the presence of antiphase boundaries linked to superdislocations helps to understand the spin-glass behavior at low temperatures in martensite. Finally, the particles in the deformed state were introduced in a photosensitive polymer. The mechanical damping associated to the Martensitic Transformation (MT) of the particles is clearly distinguished in the produced composite, which could be interesting for the development of magnetically-tunable mechanical dampers.
  • PublicationOpen Access
    Study of the martensitic transition in Ni-Mn-Sn-Ti ferromagnetic shape memory alloys
    (Rede Latino-Americana de Materiais, 2018) Bonifacich, Federico Guillermo; Lambri, Osvaldo Agustín; Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Sánchez-Alarcos Gómez, Vicente; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; Física; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In the present work, mechanical spectroscopy measurements as a function of temperature and strain have been performed in (at.%) Ni50Mn37Sn13-xTix (x=0, 0.5 and 2) ferromagnetic shape memory alloys in order both to study martensitic transition phenomenon and also to determine its temperature of appearance. For mechanical spectroscopy measurements, a five elements piezoelectric device recently developed has been used. In addition, other characterization techniques as, differential thermal analysis and superconducting quantum interference magnetic spectroscopy, were also used. Besides, relaxation processes near the martensitic transition temperature have been also observed.