Erro Iturralde, Irantzu
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Erro Iturralde
First Name
Irantzu
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Experimental study of a multistage thermoelectric heat pump using different internal heat exchangers(2021) Erro Iturralde, Irantzu; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniería; Institute of Smart Cities - ISC; IngeniaritzaThe current need to carry out an energy transition towards a 100 % renewable horizon places the energy storage as the key. Thermal energy storage has the potential to be an optimal technology. Nowadays electrical resistors are used to convert electrical energy to termal energy by heating an air flux which is stored afterwards. In this work, it is proposed to use a multistage thermoelectric heat pump (MS-TEHP) to do this energy conversion. It has been experimentally analyzed and compared the performance of two MS-TEHP with different internal heat exchangers. With this preliminary research, it has been demonstrated the feasibility of this novel thermoelectric technology which aim is to improve the energy conversión process for thermal energy storage.Publication Open Access Advanced phase-change intermediate heat exchanger development for multistage thermoelectric heat pumps(Elsevier, 2023) Erro Iturralde, Irantzu; Aranguren Garacochea, Patricia; Alegría Cía, Patricia; Rodríguez García, Antonio; Astrain Ulibarrena, David; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe need to reach a full energy decarbonisation is well known. Heating and cooling consumption is almost half of the global energy end-use. Thus, development of low-carbon and highly efficient power-to-heat technologies must be developed. In this work, the use of thermoelectric technology working as a heat pump is proposed to heat up an airflow of 38 m3/h. Two different prototypes of multistage thermoelectric heat pumps have been developed and compared based on monophasic and phase-change intermediate heat exchangers. The reduced thermal resistance obtained for the novel phase-change heat exchanger increases the heat flux supplied to the airflow and reduces the consumed power of the system, outperforming the operation of the monophasic thermoelectric heat pump between a 30 and a 67 %. The novel multistage phase-change heat pump obtains experimental COP values between 3.25 and 1.26 when the airflow rises its temperature from 3.5 °C to 23.5 °C. Additionally, this experimental study proves a new methodology to calculate the supplied heat flux to the airflow. The validation of this technology proves a discrepancy of ± 9 % when this novel technology is compared to the conventional one based on the airflow temperature rise.