Erro Iturralde, Irantzu
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Erro Iturralde
First Name
Irantzu
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Advanced phase-change intermediate heat exchanger development for multistage thermoelectric heat pumps(Elsevier, 2023) Erro Iturralde, Irantzu; Aranguren Garacochea, Patricia; Alegría Cía, Patricia; Rodríguez García, Antonio; Astrain Ulibarrena, David; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe need to reach a full energy decarbonisation is well known. Heating and cooling consumption is almost half of the global energy end-use. Thus, development of low-carbon and highly efficient power-to-heat technologies must be developed. In this work, the use of thermoelectric technology working as a heat pump is proposed to heat up an airflow of 38 m3/h. Two different prototypes of multistage thermoelectric heat pumps have been developed and compared based on monophasic and phase-change intermediate heat exchangers. The reduced thermal resistance obtained for the novel phase-change heat exchanger increases the heat flux supplied to the airflow and reduces the consumed power of the system, outperforming the operation of the monophasic thermoelectric heat pump between a 30 and a 67 %. The novel multistage phase-change heat pump obtains experimental COP values between 3.25 and 1.26 when the airflow rises its temperature from 3.5 °C to 23.5 °C. Additionally, this experimental study proves a new methodology to calculate the supplied heat flux to the airflow. The validation of this technology proves a discrepancy of ± 9 % when this novel technology is compared to the conventional one based on the airflow temperature rise.Publication Open Access Thermoelectrics working in favour of the natural heat flow to actively control the heat dissipation(Elsevier, 2024) Alzuguren Larraza, Iñaki; Aranguren Garacochea, Patricia; Casi Satrústegui, Álvaro; Erro Iturralde, Irantzu; Rodríguez García, Antonio; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn sectors such as electronics, photonics and HVAC and refrigeration, heat dissipation has a major impact in their performance. However, there is generally not much control over this effect. Thus, one way of making these units more controllable would be to include thermoelectric technology in the heat dissipation systems. Therefore, in this work, a computational model based on the resistance-capacitance model to solve a thermoelectrically aided heat dissipation system is proposed, considering all the thermoelectric effects, temperature dependent thermoelectric properties and four temperature levels. Besides, an experimental prototype has been built to assess the real performance of thermoelectric modules (TEM) working under different operating conditions. Additionally, these results have been used to validate the computational model, obtaining maximum errors of ±6% in the main parameters. Moreover, the computational model has been used to simulate the effect of modifying the temperature difference between the hot and cold sources and the thermal resistances of the heatsinks located on both sides of the TEMs. The results show that the thermoelectrically aided dissipation system would be beneficial when working with low temperature differences and low thermal resistance values of the heatsinks, especially on the heatsink located on the hot side of the TEMs.