Erro Iturralde, Irantzu

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Erro Iturralde

First Name

Irantzu

person.page.departamento

Ingeniería

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Experimental analysis of one and two-stage thermoelectric heat pumps to enhance the performance of a thermal energy storage
    (Elsevier, 2023) Astrain Ulibarrena, David; Aranguren Garacochea, Patricia; Erro Iturralde, Irantzu; Chavarren Oroz, David; Alzuguren Larraza, Iñaki; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC
    This experimental study demonstrates the possibility to enhance the performance of a low-temperature thermal energy storage system (~160 ¿C) based on airflow heating using electrical heaters by including thermoelectric technology. An improvement of the 17 % on COP is reached by using an optimized thermoelectric heat pump system to preheat the airflow, consisting of three one-stage and three pyramidal two-stage thermoelectric heat pumps sequentially installed along the airflow that is heating. This research experimentally analyses and compares the COP of three different configurations of thermoelectric heat pumps: one-stage, square two-stage, and pyramidal two-stage thermoelectric heat pumps. The experimental study aims to characterize the operation of each configuration for heating an airflow of 16.5 m3/h at 25 ¿C as ambient temperature. To that purpose, the airflow inlet temperature, voltage supply, and voltage ratio between stages have been modified. The experimental results show that for 25 ¿C as inlet temperature the one-stage thermoelectric heat pump has the best performance with a maximum generated heat of 78 W. Whereas, a two-stage thermoelectric heat pump is required when the inlet temperature increases. At 40 ¿C as inlet temperature, the square two-stage configuration provides the best performance with a voltage ratio of 2, which reaches a COP of 3.29 generating only 20 W of heat. However, the pyramidal two-stage configuration is able to achieve the maximum heat outputs with a voltage ratio of 1, generating 172; 161; 149 and 138 W, with corresponding COP values of 1.17; 1.16; 1.14 and 1.11 for inlet temperatures of 25; 40; 55 and 70 ¿C. This configuration is the one that achieves the greatest COP values with high inlet temperatures.
  • PublicationOpen Access
    Enhancement of the power-to-heat energy conversion process of a thermal energy storage cycle through the use of a thermoelectric heat pump
    (Elsevier, 2024) Erro Iturralde, Irantzu; Aranguren Garacochea, Patricia; Sorbet Presentación, Francisco Javier; Bonilla-Campos, Íñigo; Astrain Ulibarrena, David; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The principal strategy for achieving a neutral climate entails enhancing the share of renewable energies in the energy mix, in conjunction with promoting innovation in efficient technologies. Thermal energy storage systems have the potential to efficiently handle the intermittent nature of renewable energy sources. Furthermore, these systems can effectively handle shifts in both heat and electrical demand. Thus, efficient power-to-heat technologies are needed to boost thermal energy storage. This manuscript explores the potential of utilising a thermoelectric heat pump system in conjunction with electric resistances for charging a thermal energy storage. In order to achieve elevated temperatures, the thermoelectric system integrates thermoelectric heat pump blocks in a two-stage configuration. Air has been employed as a heat transfer medium for sensible heat storage. Higher airflow rates improve the performance of thermoelectric heat pump system. Moreover, its impact on the optimal voltage supply of the thermoelectric system is observed when it is combined with an electric resistance to achieve elevated temperatures. In comparison to the basic charging process that solely relies on the electric resistance of a thermal energy storage at 120 °C, a significant 30 % increase in power-to-heat energy conversion has been achieved by including the thermoelectric heat pump system. In fact, it efficiently elevates the temperature from the initial ambient temperature of 25 °C to a remarkable 113.1 °C, achieving a coefficient of performance of 1.35 with an airflow rate of 23 m3/h. Therefore, the use of this technology to enhance a complete process of storing excess renewable energy in the form of heat for subsequent use in both heat and electricity through a combined heat and power cycle is demonstrated.