Pérez Quintana, Dayan
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Pérez Quintana
First Name
Dayan
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Fully metallic Luneburg metalens antenna in gap waveguide technology at V-band(IEEE, 2023) Pérez Quintana, Dayan; Bilitos, Christos; Ruiz-García, Jorge; Ederra Urzainqui, Íñigo; Teniente Vallinas, Jorge; González-Ovejero, David; Beruete Díaz, Miguel; Institute of Smart Cities - ISCThis article presents the design of a flat Luneburg metalens antenna at V-band using gap waveguide (GW) technology. The metalens consists of a parallel plate waveguide (PPW) loaded with metallic pins whose height is modulated to get an effective refractive index that follows the Luneburg equation. A Groove GW (GGW) H-plane horn is used to illuminate the metalens, such that the rays are collimated and a planar wavefront is generated in the direction of propagation. Since the structure at hand is planar, it can be efficiently integrated on flat surfaces. Moreover, the fully metallic structure is mechanically robust and presents lower losses than lenses including dielectric substrates. A prototype has been fabricated and tested, simulations and experimental results are in very good agreement. The metalens yields an input reflection coefficient (S11) below −10 dB from 45 to 70 GHz, whereas the −3 dB gain fractional bandwidth is 26.2% with respect to a center frequency of 60 GHz, with a peak of 22.5 dB at 61 GHz. These features make this design an interesting solution for millimeter-wave (MMW) applications.Publication Open Access Compact groove diamond antenna in gap waveguide technology with broadband circular polarization at millimeter waves(IEEE, 2020) Pérez Quintana, Dayan; Torres García, Alicia E.; Ederra Urzainqui, Íñigo; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this paper, three compact antennas using the Ridge Gap Waveguide (RGW) technology working in the millimeter-wave band (60 GHz), with a high-purity and broadband circular polarization (CP) are numerically and experimentally analyzed. The structure is fed from the bottom by means of a standard WR-15 waveguide (V-band) to make it compatible with standard measurement systems. It is coupled with a miniaturized step transition to a ridgeline that ends in two arms of different lengths. CP is generated in a simple and effective way, by means of two orthogonal feeder arms that excite a CP in a diamond-shaped slot on top. Simulations and measurements have an excellent agreement reaching a matching bandwidth (S11 <-10 dB) from 60.3 to 69.6 GHz (> 9 GHz). Applying the axial ratio criterion (AR < 3 dB) the bandwidth in CP is 14.48%, with respect to the central frequency (59 to 70 GHz). The maximum gain is obtained with the most evolved design incorporating a diamond aperture with a horn taper and a circular groove, reaching a value of 11.12 dB at 67.3 GHz.