Faulín Fajardo, Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Faulín Fajardo

First Name

Javier

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Solving the stochastic team orienteering problem: comparing simheuristics with the sample average approximation method
    (Wiley, 2023) Panadero, Javier; Juan, Ángel A.; Ghorbani, Elnaz; Faulín Fajardo, Javier; Pagès-Bernaus, Adela; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    The team orienteering problem (TOP) is anNP-hardoptimization problem with an increasing number of po-tential applications in smart cities, humanitarian logistics, wildfire surveillance, etc. In the TOP, a fixed fleetof vehicles is employed to obtain rewards by visiting nodes in a network. All vehicles share common originand destination locations. Since each vehicle has a limitation in time or traveling distance, not all nodes inthe network can be visited. Hence, the goal is focused on the maximization of the collected reward, takinginto account the aforementioned constraints. Most of the existing literature on the TOP focuses on its de-terministic version, where rewards and travel times are assumed to be predefined values. This paper focuseson a more realistic TOP version, where travel times are modeled as random variables, which introduces reli-ability issues in the solutions due to the route-length constraint. In order to deal with these complexities, wepropose a simheuristic algorithm that hybridizes biased-randomized heuristics with a variable neighborhoodsearch and MCS. To test the quality of the solutions generated by the proposed simheuristic approach, weemploy the well-known sample average approximation (SAA) method, as well as a combination model thathybridizes the metaheuristic used in the simheuristic approach with the SAA algorithm. The results showthat our proposed simheuristic outperforms the SAA and the hybrid model both on the objective functionvalues and computational time.
  • PublicationOpen Access
    A reliability-extended simheuristics for the sustainable vehicle routing problem with stochastic travel times and demands
    (Springer, 2025-04-01) Abdullahi, Hassana; Reyes-Rubiano, Lorena Silvana; Ouelhadj, Djamila; Faulín Fajardo, Javier; Juan, Ángel A.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Real-life transport operations are often subject to uncertainties in travel time or customers'demands. Additionally, these uncertainties greatly impact the economic, environmental, and social costs of vehicle routing plans. Thus, analysing the sustainability costs of transportation activities and reliability in the presence of uncertainties is essential for decision makers. Accordingly, this paper addresses the Sustainable Vehicle Routing Problem with Stochastic Travel times and Demands. This paper proposes a novel weighted stochastic recourse model that models travel time and demand uncertainties. To solve this challenging problem, we propose an extended simheuristic that integrates reliability analysis to evaluate the reliability of the generated solutions in the presence of uncertainties. An extensive set of computational experiments is carried out to illustrate the potential of the proposed approach and analyse the influence of stochastic components on the different sustainability dimensions.
  • PublicationOpen Access
    Simulation-optimization in logistics, transportation, and SCM
    (MDPI, 2021) Juan, Ángel A.; Rabe, Markus; Goldsman, David; Faulín Fajardo, Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    This is a reprint of articles from the Special Issue published online in the open access journal Algorithms (ISSN 1999-4893) (available at: https://www.mdpi.com/journal/algorithms/special issues/Simulation Optimization). This book provides a selected collection of recent works in the growing area of simulation-optimization methods applied to transportation, logistics, and supply chain networks. Many of the authors that contribute to the book are internationally recognized experts in the field, as well as frequent speakers at the prestigious Winter Simulation Conference, where some of the Guest Editors organize an annual track on logistics, transportation and supply chains. Inside this track, it is usual to find several sessions on the concept of simheuristics, a special type of simulation optimization that combines metaheuristics with simulation to deal with complex and large-scale optimization problems under uncertainty conditions. The chapters in the book cover a wide area of logistics and transportation applications, from bike-sharing systems to container terminals, parcel locker systems, or e-commerce applications.