Faulín Fajardo, Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Faulín Fajardo
First Name
Javier
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Simheuristics: an introductory tutorial(IEEE, 2022) Juan, Ángel A.; Li, Yuda; Ammouriova, Majsa; Panadero, Javier; Faulín Fajardo, Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCBoth manufacturing and service industries are subject to uncertainty. Probability techniques and simulation methods allow us to model and analyze complex systems in which stochastic uncertainty is present. When the goal is to optimize the performance of these stochastic systems, simulation by itself is not enough and it needs to be hybridized with optimization methods. Since many real-life optimization problems in the aforementioned industries are NP-hard and large scale, metaheuristic optimization algorithms are required. The simheuristics concept refers to the hybridization of simulation methods and metaheuristic algorithms. This paper provides an introductory tutorial to the concept of simheuristics, showing how it has been successfully employed in solving stochastic optimization problems in many application fields, from production logistics and transportation to telecommunication and insurance. Current research trends in the area of simheuristics, such as their combination with fuzzy logic techniques and machine learning methods, are also discussed.Publication Open Access A review of simheuristics: extending metaheuristics to deal with stochastic combinatorial optimization problems(Elsevier Ltd., 2015) Juan Pérez, Ángel Alejandro; Faulín Fajardo, Javier; Grasman, Scott Erwin; Rabe, Markus; Figueira, Gonçalo; Estadística e Investigación Operativa; Estatistika eta Ikerketa OperatiboaMany combinatorial optimization problems (COPs) encountered in real-world logistics, transportation, production, healthcare, financial, telecommunication, and computing applications are NP-hard in nature. These real-life COPs are frequently characterized by their large-scale sizes and the need for obtaining high-quality solutions in short computing times, thus requiring the use of metaheuristic algorithms. Metaheuristics benefit from different random-search and parallelization paradigms, but they frequently assume that the problem inputs, the underlying objective function, and the set of optimization constraints are deterministic. However, uncertainty is all around us, which often makes deterministic models oversimplified versions of real-life systems. After completing an extensive review of related work, this paper describes a general methodology that allows for extending metaheuristics through simulation to solve stochastic COPs. ‘Simheuristics’ allow modelers for dealing with real-life uncertainty in a natural way by integrating simulation (in any of its variants) into a metaheuristic-driven framework. These optimization-driven algorithms rely on the fact that efficient metaheuristics already exist for the deterministic version of the corresponding COP. Simheuristics also facilitate the introduction of risk and/or reliability analysis criteria during the assessment of alternative high-quality solutions to stochastic COPs. Several examples of applications in different fields illustrate the potential of the proposed methodology.