Person:
Erdocia Zabala, Ioseba

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Erdocia Zabala

First Name

Ioseba

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ORCID

person.page.upna

811458

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Conductance-frequency droop control to ensure transient stability of inverter-based stand-alone microgrids
    (Elsevier, 2023) Erdocia Zabala, Ioseba; Urtasun Erburu, Andoni; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Currently, inverter-based stand-alone microgrids are gaining interest due to the advantages of obtaining energy from renewable sources. To manage the operation, these microgrids include storage systems connected in par- allel to the PCC through electronic inverters that are controlled as voltage sources in order to support the fre- quency and voltage at the PCC. For the purpose of ensuring P and Q sharing among inverters and also the synchronization stability of the microgrid, droop control is widely used, achieving a satisfactory performance in normal operation. Nevertheless, in the presence of overloads or short-circuits, the inverters must limit the current for self-protection, thereby modifying the performance of the system that then becomes prone to suffer transient stability problems. In this paper, first the performance of the inverter-based stand-alone microgrids with the conventional P-f and Iact-f droops is analyzed, obtaining the stability boundaries during current limitation. In order to always ensure the synchronization stability of the system, this paper then proposes the G-f droop that consists in employing the equivalent conductance seen by each inverter for its frequency droop control. Furthermore, as this variable always correctly represents the inverter power angle, the system dynamics are not affected by the operating conditions. The theoretical results have been validated by means of simulation and Hardware-In-the-Loop results, showing the superior performance of the proposed G-f droop
  • PublicationOpen Access
    Power angle-frequency droop control to enhance transient stability of grid-forming inverters under voltage dips
    (IEEE, 2022) Erdocia Zabala, Ioseba; Urtasun Erburu, Andoni; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Due to the replacement of synchronous generators, grid operators are currently demanding to control grid-connected inverters in grid–forming mode to make them participate in the maintenance of the grid. To carry this out, the traditional droop controls based on the active and reactive powers are usually adopted, achieving a satisfactory performance in normal operation. Nevertheless, the power-frequency (P-ω) droop may become transiently unstable under voltage dips. This is because of the modification of the active power response caused by the inverter current limitation together with the voltage reduction. To enhance this, the power angle-frequency (δinv-ω) droop is proposed, consisting in employing an estimation of the inverter power angle as input to obtain the inverter frequency. The proposed method provides the inverter with the same performance as the P-ω droop in normal operation, while enhancing considerably the transient stability margins under current limitation. This is thanks to the higher variation of the inverter power angle with the phase difference between the inverter and the grid. Simulation results show the transient stability problems of the P-ω droop as well as the superior performance of the proposed δinv-ω droop control, which has also been verified by means of HIL results.