Reyes-Rubiano, Lorena Silvana

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Reyes-Rubiano

First Name

Lorena Silvana

person.page.departamento

Estadística e Investigación Operativa

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    A reliability-extended simheuristics for the sustainable vehicle routing problem with stochastic travel times and demands
    (Springer, 2025-04-01) Abdullahi, Hassana; Reyes-Rubiano, Lorena Silvana; Ouelhadj, Djamila; Faulín Fajardo, Javier; Juan, Ángel A.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Real-life transport operations are often subject to uncertainties in travel time or customers'demands. Additionally, these uncertainties greatly impact the economic, environmental, and social costs of vehicle routing plans. Thus, analysing the sustainability costs of transportation activities and reliability in the presence of uncertainties is essential for decision makers. Accordingly, this paper addresses the Sustainable Vehicle Routing Problem with Stochastic Travel times and Demands. This paper proposes a novel weighted stochastic recourse model that models travel time and demand uncertainties. To solve this challenging problem, we propose an extended simheuristic that integrates reliability analysis to evaluate the reliability of the generated solutions in the presence of uncertainties. An extensive set of computational experiments is carried out to illustrate the potential of the proposed approach and analyse the influence of stochastic components on the different sustainability dimensions.
  • PublicationOpen Access
    A biased-randomized learnheuristic for solving the team orienteering problem with dynamic rewards
    (Elsevier, 2020) Reyes-Rubiano, Lorena Silvana; Juan Pérez, Ángel Alejandro; Bayliss, C.; Panadero, Javier; Faulín Fajardo, Javier; Copado, P.; Institute of Smart Cities - ISC
    In this paper we discuss the team orienteering problem (TOP) with dynamic inputs. In the static version of the TOP, a fixed reward is obtained after visiting each node. Hence, given a limited fleet of vehicles and a threshold time, the goal is to design the set of routes that maximize the total reward collected. While this static version can be efficiently tackled using a biased-randomized heuristic (BR-H), dealing with the dynamic version requires extending the BR-H into a learnheuristic (BR-LH). With that purpose, a 'learning' (white-box) mechanism is incorporated to the heuristic in order to consider the variations in the observed rewards, which follow an unknown (black-box) pattern. In particular, we assume that: (i) each node in the network has a 'base' or standard reward value; and (ii) depending on the node's position inside its route, the actual reward value might differ from the base one according to the aforementioned unknown pattern. As new observations of this black-box pattern are obtained, the white-box mechanism generates better estimates for the actual rewards after each new decision. Accordingly, better solutions can be generated by using this predictive mechanism. Some numerical experiments contribute to illustrate these concepts.