Reyes-Rubiano, Lorena Silvana
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Reyes-Rubiano
First Name
Lorena Silvana
person.page.departamento
Estadística e Investigación Operativa
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access A reliability-extended simheuristics for the sustainable vehicle routing problem with stochastic travel times and demands(Springer, 2025-04-01) Abdullahi, Hassana; Reyes-Rubiano, Lorena Silvana; Ouelhadj, Djamila; Faulín Fajardo, Javier; Juan, Ángel A.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaReal-life transport operations are often subject to uncertainties in travel time or customers'demands. Additionally, these uncertainties greatly impact the economic, environmental, and social costs of vehicle routing plans. Thus, analysing the sustainability costs of transportation activities and reliability in the presence of uncertainties is essential for decision makers. Accordingly, this paper addresses the Sustainable Vehicle Routing Problem with Stochastic Travel times and Demands. This paper proposes a novel weighted stochastic recourse model that models travel time and demand uncertainties. To solve this challenging problem, we propose an extended simheuristic that integrates reliability analysis to evaluate the reliability of the generated solutions in the presence of uncertainties. An extensive set of computational experiments is carried out to illustrate the potential of the proposed approach and analyse the influence of stochastic components on the different sustainability dimensions.Publication Open Access A simheuristic for routing electric vehicles with limited driving ranges and stochastic travel times(Institut d'Estadistica de Catalunya (Idescat), 2019) Reyes-Rubiano, Lorena Silvana; Ferone, Daniele; Juan Pérez, Ángel Alejandro; Faulín Fajardo, Javier; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaGreen transportation is becoming relevant in the context of smart cities, where the use of electric vehicles represents a promising strategy to support sustainability policies. However the use of electric vehicles shows some drawbacks as well, such as their limited driving-range capacity. This paper analyses a realistic vehicle routing problem in which both driving-range constraints and stochastic travel times are considered. Thus, the main goal is to minimize the expected time-based cost required to complete the freight distribution plan. In order to design reliable routing plans, a simheuristic algorithm is proposed. It combines Monte Carlo simulation with a multi-start metaheuristic, which also employs biased-randomization techniques. By including simulation, simheuristics extend the capabilities of metaheuristics to deal with stochastic problems. A series of computational experiments are performed to test our solving approach as well as to analyse the effect of uncertainty on the routing plans.