Rodríguez García, Antonio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Rodríguez García
First Name
Antonio
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Experimental measurement of thermal conductivity of stereolithography photopolymer resins(Springer, 2022) Oval Trujillo, Añaterve; Rodríguez García, Antonio; Pérez Artieda, Miren Gurutze; Dung Dang, Phuc Yau; Alegría Cía, Patricia; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Gobierno de Navarra / Nafarroako GobernuaThe rise in the use of additive manufacturing highlights the importance of knowing the properties of the materials employed in this technology. Therefore, for the commercialization of thermal applications with this technology, heat management is essential. Here, computational modelling is often utilised to simulate heat transfer in various components, and knowing precisely the values of thermal conductivity is one of the key parameters. In this line of research, this paper includes the experimental study of three different types of resin used in additive manufacturing by stereolithography. Based on a test bench designed by researchers from the Public University of Navarre, which measures thermal contact resistances and thermal conductivities, the thermal conductivity analysis of three kinds of resin is carried out. This measuring machine employs the temperature difference between the faces and the heat flux that crosses the studied sample to determine the mentioned parameters. The thermal conductivity results are successful considering the constitution of the material studied and are consistent with the conductivity values for thermal insulating materials. The ELEGOO standard resin stands out among the others due to its low thermal conductivity of 0.366 W/m K.Publication Open Access Influence of temperature and aging on the thermal contact resistance in thermoelectric devices(Springer, 2020) Rodríguez García, Antonio; Pérez Artieda, Miren Gurutze; Beisti Antoñanzas, Irene; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaDuring thermal design in the first phases development, thermoelectric systems, such as thermoelectric generators, the most important parameter affecting the performance is thermal resistance of the components. This paper focusses on the thermal contact resistance (TCR), analyzing the influence of aging and temperature on different thermal interface materials (TIMs), i.e., thermal paste, graphite and indium. In previous papers, TCR has been studied depending on parameters such as surface roughness, bonding pressure, thermal conductivity and surface hardness. However, in thermoelectric applications, a relevant aspect to consider when choosing a TIM is aging due to thermal stress. The exposure of this type of material to high temperatures for long periods of time leads to deterioration, which causes an increase in the TCR impairing the conduction of the heat flow. Therefore, there is a need to study the behavior of TIMs exposed to temperatures typical in thermoelectric generators to make a correct selection of the TIM. It has been observed that exposure to temperatures of around 180°C induces a significant increase in the thermal impedance of the three TIMs under study, although this effect is much more relevant for thermal paste. The contact, comprising steel, thermal paste and ceramic, presents a 300% increase in the thermal impedance after 70 days of aging, whereas that exceeds 185% for the contact of aluminum, thermal paste and ceramic. In the tests with exposure temperature of 60°C, there is no observed decrease in the thermal impedance.Publication Open Access Experimental measurement of the thermal conductivity of fused deposition modeling materials with a DTC-25 conductivity meter(MDPI, 2023) Rodríguez García, Antonio; Fuertes Bonel, Juan Pablo; Oval Trujillo, Añaterve; Pérez Artieda, Miren Gurutze; Ingeniería; IngeniaritzaThe expansion and low cost of additive manufacturing technologies have led to a revolution in the development of materials used by these technologies. There are several varieties of materials that can be used in additive manufacturing by fused deposition modeling (FDM). However, some of the properties of these materials are unknown or confusing. This article addresses the need to know the thermal conductivity in different filaments that this FDM technology uses, because there are multiple applications for these additive manufacturing products in the field of thermal insulation. For the study of thermal conductivity, the DTC-25 commercial conductivity measurement bench was used, where the tests were carried out on a set of seven different materials with 100% fabrication density—from base materials such as acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA), to materials with high mechanical and thermal resistance such as thermoplastic polyurethane (TPU), polyether ether ketone (PEEK), and high-performance polyetherimide thermoplastic (ULTEM), to materials with metal inclusions (aluminum 6061) that would later be subjected to thermal after-treatments. This study shows how the parts manufactured with aluminum inclusions have a higher thermal conductivity, at 0.40 ± 0.05 W/m·K, compared to other materials with high mechanical and thermal resistance, such as TPU, with a conductivity of 0.26 ± 0.05 W/m·K.