Bitarte Manzanal, Nerea

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Bitarte Manzanal

First Name

Nerea

person.page.departamento

Instituto de Agrobiotecnología (IdAB)

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    Noncontiguous operon is a genetic organization for coordinating bacterial gene expression
    (National Academy of Sciences, 2019) Sáenz Lahoya, S.; Bitarte Manzanal, Nerea; García, Beñat; Burgui Erice, Saioa; Vergara Irigaray, Marta; Valle Turrillas, Jaione; Solano Goñi, Cristina; Toledo Arana, Alejandro; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Bacterial genes are typically grouped into operons defined as clusters of adjacent genes encoding for proteins that fill related roles and are transcribed into a single polycistronic mRNA molecule. This simple organization provides an efficient mechanism to coordinate the expression of neighboring genes and is at the basis of gene regulation in bacteria. Here, we report the existence of a higher level of organization in operon structure that we named noncontiguous operon and consists in an operon containing a gene(s) that is transcribed in the opposite direction to the rest of the operon. This transcriptional architecture is exemplified by the genes menE-menC-MW1733-ytkD-MW1731 involved in menaquinone synthesis in the major human pathogen Staphylococcus aureus. We show that menE-menC-ytkD-MW1731 genes are transcribed as a single transcription unit, whereas the MW1733 gene, located between menC and ytkD, is transcribed in the opposite direction. This genomic organization generates overlapping transcripts whose expression is mutually regulated by transcriptional interference and RNase III processing at the overlapping region. In light of our results, the canonical view of operon structure should be revisited by including this operon arrangement in which cotranscription and overlapping transcription are combined to coordinate functionally related gene expression.