Person: Buezo Bravo, Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Buezo Bravo
First Name
Javier
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
0000-0002-6287-1587
person.page.upna
811160
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Embargo Oximes and nitric oxide signalling in Medicago truncatula root system architecture(2020) Buezo Bravo, Javier; Morán Juez, José Fernando; Esteban Terradillos, Raquel; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaEl óxido nítrico (NO) es una molécula señalizadora ampliamente conocida en el mundo vegetal, relacionada con cada etapa en el desarrollo de la planta. De entre todas sus funciones descritas, se sabe que actúa sinérgicamente con el ácido indol-3-acético (IAA), promoviendo el desarrollo de raíces secundarias. Hasta ahora tan solo se han confirmado algunas vías de síntesis del NO, todas ellas reductivas, mientras que aún no se ha revelado vía oxidativa alguna. Varios informes de nuestro grupo de investigación han medido síntesis de novo de NO3- y NO2- en Pisum sativum y M. truncatula crecidas con NH4+ como única fuente de nitrógeno (datos sin publicar). Este hecho sugiere la existencia de una vía oxidativa para el NH4+ en fabáceas. Se propone también que este mismo mecanismo puede ser parte de la señalización por toxicidad de NH4+ y de los procesos para su mitigación. Dada su configuración molecular, las oximas son buenos candidatos para ser precursores del NO, y, por tanto, el primer paso de esta vía de oxidación de nitrógeno. Entre todas las oximas, la Indol-3-acetaldoxima (IAOx) es especialmente relevante ya que se sitúa en la encrucijada entre el IAA y los indol glucosinolatos. El papel del IAOx en el desarrollo y señalización está muy poco estudiado en crucíferas, y es prácticamente desconocido en otras familias. En esta tesis doctoral intentamos demostrar que el IAOx está presente en M. truncatula y que posee, además, importantes funciones de señalización durante el desarrollo radicular. Por último, hipotetizamos que la señalización de IAOx está mediada por NO. Para esta labor, hemos sintetizado IAOx y una colección de otras oximas indólicas y no indólicas puras y hemos utilizado un enfoque farmacológico utilizando la planta leguminosa modelo M. truncatula. Hemos medido el fenotipo radicular, cuantificado los compuestos indólicos en tejido (parte aérea y raíz) y medido la expresión de los genes de Indol-3-acetaldehido oxidasa e IAOx deshidratasa. Nuestros datos muestran que todas las oximas promueven el fenotipo ‘superoot’, concordando con nuestra hipótesis de que el IAOx produce su efecto a través de la liberación de NO. Este nuevo conocimiento es un gran paso hacia el descubrimiento de la vía oxidativa de síntesis de NO en plantas y arroja luz a la interacción entre IAOx, IAA y la nutrición nitrogenada, que será imprescindible para futuras investigaciones en campos de cultivoPublication Open Access The proteome of Medicago truncatula in response to ammonium and urea nutrition reveals the role of membrane proteins and enzymes of root lignification(Elsevier, 2019) Royo Castillejo, Beatriz; Esteban Terradillos, Raquel; Buezo Bravo, Javier; Santamaría Martínez, Enrique; Fernández Irigoyen, Joaquín; Becker, Dirk; Morán Juez, José Fernando; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaPlants differ widely in their growth and tolerance responses to ammonium and urea nutrition, while derived phenotypes seem markedly different from plants grown under nitrate supply. Plant responses to N sources are complex, and the traits involved remain unknown. This work reports a comprehensive and quantitative root proteomic study on the NH4+-tolerant legume Medicago truncatula grown under axenic conditions with either nitrate, NH4+ or urea supply as sole N source by using the iTRAQ method. Sixty-one different proteins among the three N sources were identified. Interestingly, among the proteomic responses, urea nutrition displayed greater similarity to nitrate than to ammonium nutrition. We found remarkable differences in membrane proteins that play roles in sensing the N form, and regulate the intracellular pH and the uptake of N. Also, several groups of proteins were differentially expressed in the C metabolism pathway involved in reorganizing N assimilation. In addition, enzymes related to phenylpropanoid metabolism, including the peroxidases POD2, POD6, POD7 and POD11, which were up-regulated under ammonium nutrition, contributed to the reinforcement of cell walls, as confirmed by specific staining of lignin. Thus, we identified cell wall lignification as an important tolerance mechanism of root cells associated with the stunted phenotype typical of plants grown under ammonium nutrition.