Castanera Andrés, Raúl

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Castanera Andrés

First Name

Raúl

person.page.departamento

Producción Agraria

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 15
  • PublicationOpen Access
    Transcriptional and enzymatic profiling of Pleurotus ostreatus laccase genes in submerged and solid-state fermentation cultures
    (American Society for Microbiology, 2012) Castanera Andrés, Raúl; Pérez Garrido, María Gumersinda; Omarini, Alejandra; Alfaro Sánchez, Manuel; Pisabarro de Lucas, Gerardo; Faraco, Vicenza; Amore, Antonella; Ramírez Nasto, Lucía; Producción Agraria; Nekazaritza Ekoizpena; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The genome of the white rot basidiomycete Pleurotus ostreatus includes 12 phenol oxidase (laccase) genes. In this study, we examined their expression profiles in different fungal strains under different culture conditions (submerged and solid cultures) and in the presence of a wheat straw extract, which was used as an inducer of the laccase gene family. We used a reverse transcription- quantitative PCR (RT-qPCR)-based approach and focused on determining the reaction parameters (in particular, the reference gene set for the normalization and reaction efficiency determinations) used to achieve an accurate estimation of the relative gene expression values. The results suggested that (i) laccase gene transcription is upregulated in the induced submerged fermentation (iSmF) cultures but downregulated in the solid fermentation (SSF) cultures, (ii) the Lacc2 and Lacc10 genes are the main sources of laccase activity in the iSmF cultures upon induction with water-soluble wheat straw extracts, and (iii) an additional, as-yet-uncharacterized activity (Unk1) is specifically induced in SSF cultures that complements the activity of Lacc2 and Lacc10. Moreover, both the enzymatic laccase activities and the Lacc gene family transcription profiles greatly differ between closely related strains. These differences can be targeted for biotechnological breeding programs for enzyme production in submerged fermentation reactors.
  • PublicationOpen Access
    Highly expressed captured genes and cross-kingdom domains present in Helitrons create novel diversity in Pleurotus ostreatus and other fungi
    (BioMed Central, 2014) Castanera Andrés, Raúl; Pérez Garrido, María Gumersinda; López Varas, Leticia; Sancho, Rubén; Santoyo Santos, Francisco; Alfaro Sánchez, Manuel; Gabaldón Estevan, Juan Antonio; Pisabarro de Lucas, Gerardo; Oguiza Tomé, José Antonio; Ramírez Nasto, Lucía; Producción Agraria; Nekazaritza Ekoizpena; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Background: Helitrons are class-II eukaryotic transposons that transpose via a rolling circle mechanism. Due to their ability to capture and mobilize gene fragments, they play an important role in the evolution of their host genomes. We have used a bioinformatics approach for the identification of helitrons in two Pleurotus ostreatus genomes using de novo detection and homology-based searching. We have analyzed the presence of helitron-captured genes as well as the expansion of helitron-specific helicases in fungi and performed a phylogenetic analysis of their conserved domains with other representative eukaryotic species. Results: Our results show the presence of two helitron families in P. ostreatus that disrupt gene colinearity and cause a lack of synteny between their genomes. Both putative autonomous and non-autonomous helitrons were transcriptionally active, and some of them carried highly expressed captured genes of unknown origin and function. In addition, both families contained eukaryotic, bacterial and viral domains within the helitron’s boundaries. A phylogenetic reconstruction of RepHel helicases using the Helitron-like and PIF1-like helicase conserved domains revealed a polyphyletic origin for eukaryotic helitrons. Conclusion: P. ostreatus helitrons display features similar to other eukaryotic helitrons and do not tend to capture host genes or gene fragments. The occurrence of genes probably captured from other hosts inside the helitrons boundaries pose the hypothesis that an ancient horizontal transfer mechanism could have taken place. The viral domains found in some of these genes and the polyphyletic origin of RepHel helicases in the eukaryotic kingdom suggests that virus could have played a role in a putative lateral transfer of helitrons within the eukaryotic kingdom. The high similarity of some helitrons, along with the transcriptional activity of its RepHel helicases indicates that these elements are still active in the genome of P. ostreatus.
  • PublicationOpen Access
    Non-additive transcriptional profiles underlie dikaryotic superiority in Pleurotus ostreatus laccase activity
    (Public Library of Science, 2013) Castanera Andrés, Raúl; Omarini, Alejandra; Santoyo Santos, Francisco; Pérez Garrido, María Gumersinda; Pisabarro de Lucas, Gerardo; Ramírez Nasto, Lucía; Producción Agraria; Nekazaritza Ekoizpena; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Background: The basidiomycete Pleurotus ostreatus is an efficient producer of laccases, a group of enzymes appreciated for their use in multiple industrial processes. The aim of this study was to reveal the molecular basis of the superiority of laccase production by dikaryotic strains compared to their parental monokaryons. Methodology/Principal Findings: We bred and studied a set of dikaryotic strains starting from a meiotic population of monokaryons. We then completely characterised the laccase allelic composition, the laccase gene expression and activity profiles in the dikaryotic strain N001, in two of its meiotic full-sib monokaryons and in the dikaryon formed from their mating. Conclusions/Significance: Our results suggested that the dikaryotic superiority observed in laccase activity was due to nonadditive transcriptional increases in lacc6 and lacc10 genes. Furthermore, the expression of these genes was divergent in glucose- vs. lignocellulose-supplemented media and was highly correlated to the detected extracellular laccase activity. Moreover, the expression profile of lacc2 in the dikaryotic strains was affected by its allelic composition, indicating a putative single locus heterozygous advantage.
  • PublicationOpen Access
    Ligninolytic peroxidase gene expression by Pleurotus ostreatus: differential regulation in lignocellulose medium and effect of temperature and pH
    (Elsevier, 2014) Fernández Fueyo, Elena; Castanera Andrés, Raúl; Ruiz Dueñas, Francisco J.; Ramírez Nasto, Lucía; Pisabarro de Lucas, Gerardo; Producción Agraria; Nekazaritza Ekoizpena
    Pleurotus ostreatus is an important edible mushroom and a model lignin degrading organism, whose genome contains nine genes of ligninolytic peroxidases, characteristic of white-rot fungi. These genes encode six manganese peroxidase (MnP) and three versatile peroxidase (VP) isoenzymes. Using liquid chromatography coupled to tandem mass spectrometry, secretion of four of these peroxidase isoenzymes (VP1, VP2, MnP2 and MnP6) was confirmed when P. ostreatus grows in a lignocellulose medium at 25 C (three more isoenzymes were identified by only one unique peptide). Then, the effect of environmental parameters on the expression of the above nine genes was studied by reverse transcription-quantitative PCR by changing the incubation temperature and medium pH of P. ostreatus cultures pre-grown under the above conditions (using specific primers and two reference genes for result normalization). The cultures maintained at 25 C (without pH adjustment) provided the highest levels of peroxidase transcripts and the highest total activity on Mn2+ (a substrate of both MnP and VP) and Reactive Black 5 (a VP specific substrate). The global analysis of the expression patterns divides peroxidase genes into three main groups according to the level of expression at optimal conditions (vp1/mnp3 > vp2/vp3/mnp1/mnp2/mnp6 > mnp4/mnp5). Decreasing or increasing the incubation temperature (to 10 C or 37 C) and adjusting the culture pH to acidic or alkaline conditions (pH 3 and 8) generally led to downregulation of most of the peroxidase genes (and decrease of the enzymatic activity), as shown when the transcription levels were referred to those found in the cultures maintained at the initial conditions. Temperature modification produced less dramatic effects than pH modification, with most genes being downregulated during the whole 10 C treatment, while many of them were alternatively upregulated (often 6 h after the thermal shock) and downregulated (12 h) at 37 C. Interestingly, mnp4 and mnp5 were the only peroxidase genes upregulated under alkaline pH conditions. The differences in the transcription levels of the peroxidase genes when the culture temperature and pH parameters were changed suggest an adaptive expression according to environmental conditions. Finally, the intracellular proteome was analyzed, under the same conditions used in the secretomic analysis, and the protein product of the highly-transcribed gene mnp3 was detected. Therefore, it was concluded that the absence of MnP3 from the secretome of the P. ostreatus lignocellulose cultures was related to impaired secretion.
  • PublicationOpen Access
    Transposon-associated epigenetic silencing during Pleurotus ostreatus life cycle
    (Oxford University Press, 2018) Borgognone, Alessandra; Castanera Andrés, Raúl; Morselli, Marco; López Varas, Leticia; Rubbi, Liudmilla; Pisabarro de Lucas, Gerardo; Pellegrini, Matteo; Ramírez Nasto, Lucía; Producción Agraria; Nekazaritza Ekoizpena; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Transposable elements constitute an important fraction of eukaryotic genomes. Given their mutagenic potential, host-genomes have evolved epigenetic defense mechanisms to limit their expansion. In fungi, epigenetic modifications have been widely studied in ascomycetes, although we lack a global picture of the epigenetic landscape in basidiomycetes. In this study, we analysed the genome-wide epigenetic and transcriptional patterns of the white-rot basidiomycete Pleurotus ostreatus throughout its life cycle. Our results performed by using high-throughput sequencing analyses revealed that strain-specific DNA methylation profiles are primarily involved in the repression of transposon activity and suggest that 21 nt small RNAs play a key role in transposon silencing. Furthermore, we provide evidence that transposon-associated DNA methylation, but not sRNA production, is directly involved in the silencing of genes surrounded by transposons. Remarkably, we found that nucleus-specific methylation levels varied in dikaryotic strains sharing identical genetic complement but different subculture conditions. Finally, we identified key genes activated in the fruiting process through the comparative analysis of transcriptomes. This study provides an integrated picture of epigenetic defense mechanisms leading to the transcriptional silencing of transposons and surrounding genes in basidiomycetes. Moreover, our findings suggest that transcriptional but not methylation reprogramming triggers fruitbody development in P. ostreatus.
  • PublicationOpen Access
    Transposable elements in basidiomycete fungi: dynamics and impact on genome architecture and transcriptional profiles
    (2017) Castanera Andrés, Raúl; Ramírez Nasto, Lucía; Producción Agraria; Nekazaritza Ekoizpena
    Transposable elements (TE), also known as mobile elements or transposons, are enigmatic genetic units that have played important roles in the evolution of eukaryotes. Their impact on genome architecture and phenotypic traits has been widely studied in plants and animals, ever since their discovery in maize during the 1950s by Barbara McClintock. Their ability to move from one locus to another makes them natural tools for generating diversity, as this characteristic leads to genomic alterations with deleterious, neutral, or beneficial effects on hosts. Thus, their survival in the genome depends on the equilibrium between their own benefit and their host’s “permissibility.” Plant and animal TEs have received much attention, yet very little is known about their occurrence and impact on the fungal kingdom. In fact, the first fungal TE was described in Neurospora crassa in 1989, about 40 years later than the discovery of the first TE in plants. Today, revolutionary advances in genome sequencing have opened the possibility of studying non-model species at a whole-genome level. The number of fungal-sequenced genomes increases daily at an unprecedented rate, and most efforts are being concentrated on basidiomycetes, a group of fungi of great interest due to their role in natural ecosystems and their use in multiple industrial applications. In this sense, the amount of genomic information released offers a unique opportunity to start deciphering the effect that mobile, repetitive elements have on fungal genomes. At the time of the start of this PhD thesis (January 2013), very little information regarding basidiomycete TEs existed, as most research was focused on the functional characterization of protein-coding genes. In light of these precedents, the main topics covered in this work are the distribution, characteristics, and impact of transposons in fungal genomes, with an emphasis on basidiomycetes. Using Pleurotus ostreatus as a working model, bioinformatics pipelines have been developed to dig into the extensive genomic data to obtain high quality TE annotations. This approach has allowed for the quantification and characterization of the transposon load of many fungal species and for the testing of hypotheses about the effect that TE insertions produce at the genomic and transcriptomic level.
  • PublicationOpen Access
    Comparative genomics of Coniophora olivacea reveals different patterns of genome expansion in Boletales
    (BioMed Central, 2017) Castanera Andrés, Raúl; Pérez Garrido, María Gumersinda; López Varas, Leticia; Amselem, Joëlle; LaButti, Kurt; Singan, Vasanth; Lipzen, Anna; Haridas, Sajeet; Barry, Kerrie; Grigoriev, Igor V.; Pisabarro de Lucas, Gerardo; Ramírez Nasto, Lucía; Producción Agraria; Nekazaritza Ekoizpena; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Background: Coniophora olivacea is a basidiomycete fungus belonging to the order Boletales that produces brown-rot decay on dead wood of conifers. The Boletales order comprises a diverse group of species including saprotrophs and ectomycorrhizal fungi that show important differences in genome size. Results: In this study we report the 39.07-megabase (Mb) draft genome assembly and annotation of C. olivacea. A total of 14,928 genes were annotated, including 470 putatively secreted proteins enriched in functions involved in lignocellulose degradation. Using similarity clustering and protein structure prediction we identified a new family of 10 putative lytic polysaccharide monooxygenase genes. This family is conserved in basidiomycota and lacks of previous functional annotation. Further analyses showed that C. olivacea has a low repetitive genome, with 2.91% of repeats and a restrained content of transposable elements (TEs). The annotation of TEs in four related Boletales yielded important differences in repeat content, ranging from 3.94 to 41.17% of the genome size. The distribution of insertion ages of LTRretrotransposons showed that differential expansions of these repetitive elements have shaped the genome architecture of Boletales over the last 60 million years. Conclusions: Coniophora olivacea has a small, compact genome that shows macrosynteny with Coniophora puteana. The functional annotation revealed the enzymatic signature of a canonical brown-rot. The annotation and comparative genomics of transposable elements uncovered their particular contraction in the Coniophora genera, highlighting their role in the differential genome expansions found in Boletales species.
  • PublicationOpen Access
    Transposable elements versus the fungal genome: impact on whole-genome architecture and transcriptional profiles
    (Public Library of Science, 2016) Castanera Andrés, Raúl; López Varas, Leticia; Borgognone, Alessandra; LaButti, Kurt; Lapidus, Alla; Schmutz, Jeremy; Grimwood, Jane; Pérez Garrido, María Gumersinda; Pisabarro de Lucas, Gerardo; Grigoriev, Igor V.; Stajich, Jason E.; Ramírez Nasto, Lucía; Producción Agraria; Nekazaritza Ekoizpena
    Transposable elements (TEs) are exceptional contributors to eukaryotic genome diversity. Their ubiquitous presence impacts the genomes of nearly all species and mediates genome evolution by causing mutations and chromosomal rearrangements and by modulating gene expression. We performed an exhaustive analysis of the TE content in 18 fungal genomes, including strains of the same species and species of the same genera. Our results depicted a scenario of exceptional variability, with species having 0.02 to 29.8% of their genome consisting of transposable elements. A detailed analysis performed on two strains of Pleurotus ostreatus uncovered a genome that is populated mainly by Class I elements, especially LTR-retrotransposons amplified in recent bursts from 0 to 2 million years (My) ago. The preferential accumulation of TEs in clusters led to the presence of genomic regions that lacked intra- and inter-specific conservation. In addition, we investigated the effect of TE insertions on the expression of their nearby upstream and downstream genes. Our results showed that an important number of genes under TE influence are significantly repressed, with stronger repression when genes are localized within transposon clusters. Our transcriptional analysis performed in four additional fungal models revealed that this TE-mediated silencing was present only in species with active cytosine methylation machinery. We hypothesize that this phenomenon is related to epigenetic defense mechanisms that are aimed to suppress TE expression and control their proliferation.
  • PublicationOpen Access
    Comparative and transcriptional analysis of the predicted secretome in the lignocellulose-degrading basidiomycete fungus Pleurotus ostreatus
    (Wiley, 2016) Alfaro Sánchez, Manuel; Castanera Andrés, Raúl; Lavín Trueba, José Luis; Oguiza Tomé, José Antonio; Ramírez Nasto, Lucía; Pisabarro de Lucas, Gerardo; Producción Agraria; Nekazaritza Ekoizpena; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Fungi interact with their environment by secreting proteins to obtain nutrients, elicit responses and modify their surroundings. Because the set of proteins secreted by a fungus is related to its lifestyle, it should be possible to use it as a tool to predict fungal lifestyle. To test this hypothesis, we bioinformatically identified 538 and 554 secretable proteins in the monokaryotic strains PC9 and PC15 of the white rot basidiomycete Pleurotus ostreatus. Functional annotation revealed unknown functions (37.2%), glycosyl hydrolases (26.5%) and redox enzymes (11.5%) as the main groups in the two strains. When these results were combined with RNA‐seq analyses, we found that the relative importance of each group was different in different strains and culture conditions and the relevance of the unknown function proteins was enhanced. Only a few genes were actively expressed in a given culture condition in expanded multigene families, suggesting that family expansi on could increase adaptive opportunities rather than activity under a specific culture condition. Finally, we used the set of P. ostreatus secreted proteins as a query to search their counterparts in other fungal genomes and found that the secretome profiles cluster the tested basidiomycetes into lifestyle rather than phylogenetic groups.
  • PublicationOpen Access
    Genomics and transcriptomics characterization of genes expressed during postharvest at 4 degrees C by the edible basidiomycete Pleurotus ostreatus
    (Viguera Editores, S. L., 2011) Ramírez Nasto, Lucía; Oguiza Tomé, José Antonio; Pérez Garrido, María Gumersinda; Lavín Trueba, José Luis; Omarini, Alejandra; Santoyo Santos, Francisco; Alfaro Sánchez, Manuel; Castanera Andrés, Raúl; Parenti, Alejandra; Muguerza Domínguez, Elaia; Pisabarro de Lucas, Gerardo; Producción Agraria; Nekazaritza Ekoizpena
    Pleurotus ostreatus is an industrially cultivated basidiomycete with nutritional and environmental applications. Its genome, which was sequenced by the joint Genome Institute, has become a model for lignin degradation and for fungal genomics and transcriptomics studies. The complete P. ostreatus genome contains 35 Mbp organized in 11 chromosomes, and two different haploid genomes have been individually sequenced. In this work, genomics and transcriptomics approaches were employed in the study of P. ostreatus under different physiological conditions. Specifically, we analyzed a collection of expressed sequence tags (EST) obtained from cut fruit bodies that had been stored at 4 degrees C for 7 days (postharvest conditions). Studies of the 253 expressed clones that had been automatically and manually annotated provided a detailed picture of the life characteristics of the self-sustained fruit bodies. The results suggested a complex metabolism in which autophagy, RNA metabolism, and protein and carbohydrate turnover are increased. Genes involved in environment sensing and morphogenesis were expressed under these conditions. The data improve our understanding of the decay process in postharvest mushrooms and highlight the use of high-throughput techniques to construct models of living organisms subjected to different environmental conditions.