Castanera Andrés, Raúl

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Castanera Andrés

First Name

Raúl

person.page.departamento

Producción Agraria

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Highly expressed captured genes and cross-kingdom domains present in Helitrons create novel diversity in Pleurotus ostreatus and other fungi
    (BioMed Central, 2014) Castanera Andrés, Raúl; Pérez Garrido, María Gumersinda; López Varas, Leticia; Sancho, Rubén; Santoyo Santos, Francisco; Alfaro Sánchez, Manuel; Gabaldón Estevan, Juan Antonio; Pisabarro de Lucas, Gerardo; Oguiza Tomé, José Antonio; Ramírez Nasto, Lucía; Producción Agraria; Nekazaritza Ekoizpena; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Background: Helitrons are class-II eukaryotic transposons that transpose via a rolling circle mechanism. Due to their ability to capture and mobilize gene fragments, they play an important role in the evolution of their host genomes. We have used a bioinformatics approach for the identification of helitrons in two Pleurotus ostreatus genomes using de novo detection and homology-based searching. We have analyzed the presence of helitron-captured genes as well as the expansion of helitron-specific helicases in fungi and performed a phylogenetic analysis of their conserved domains with other representative eukaryotic species. Results: Our results show the presence of two helitron families in P. ostreatus that disrupt gene colinearity and cause a lack of synteny between their genomes. Both putative autonomous and non-autonomous helitrons were transcriptionally active, and some of them carried highly expressed captured genes of unknown origin and function. In addition, both families contained eukaryotic, bacterial and viral domains within the helitron’s boundaries. A phylogenetic reconstruction of RepHel helicases using the Helitron-like and PIF1-like helicase conserved domains revealed a polyphyletic origin for eukaryotic helitrons. Conclusion: P. ostreatus helitrons display features similar to other eukaryotic helitrons and do not tend to capture host genes or gene fragments. The occurrence of genes probably captured from other hosts inside the helitrons boundaries pose the hypothesis that an ancient horizontal transfer mechanism could have taken place. The viral domains found in some of these genes and the polyphyletic origin of RepHel helicases in the eukaryotic kingdom suggests that virus could have played a role in a putative lateral transfer of helitrons within the eukaryotic kingdom. The high similarity of some helitrons, along with the transcriptional activity of its RepHel helicases indicates that these elements are still active in the genome of P. ostreatus.
  • PublicationOpen Access
    Expresión génica de peroxidasas ligninolíticas en Pleurotus ostreatus: regulación por temperatura y pH
    (2014) Castanera Andrés, Raúl; Ramírez Nasto, Lucía; Escuela Técnica Superior de Ingenieros Agrónomos; Nekazaritza Ingeniarien Goi Mailako Eskola Teknikoa
    Pleurotus ostreatus es un hongo comestible de gran importancia biotecnológica por ser un organismo modelo degradador de lignina. Su genoma contiene nueve genes codificantes de peroxidasas ligninolíticas, características de los hongos de podredumbre blanca. Estos genes codifican seis manganeso peroxidasas (MnP) y tres peroxidasas versátiles (VP). En este estudio se ha analizado el efecto de las condiciones ambientales en la expresión de estos nueve genes mediante RT-PCR a tiempo real, modificando la temperatura y el pH de los cultivos. Los cultivos mantenidos a 25ºC mostraron los mayores niveles de tránscrito, siendo mnp3 y vp1 los genes con expresión predominante. El análisis de los perfiles globales de transcripción agrupó las peroxidasas en tres grupos en base a su perfil de co-expresión. El aumento o disminución de la temperatura (de 10ºC a 37ºC) y el pH (de pH3 a pH8) produjo una represión en la mayoría de genes con respecto a las condiciones óptimas (25ºC, pH 5.5). Cabe destacar que los genes mnp4 y mnp5 fueron los únicos sobreexpresados en condiciones alcalinas. La respuesta diferencial a estrés térmico y de pH de los genes codificantes de peroxidasas sugiere que los mismos constituyen una respuesta adaptativa a las condiciones ambientales