Person:
Burgui Erice, Saioa

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Burgui Erice

First Name

Saioa

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

ORCID

0000-0002-3601-7221

person.page.upna

810416

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    A DIVA vaccine strain lacking RpoS and the secondary messenger c-di-GMP for protection against salmonellosis in pigs
    (BioMed Central, 2020) Gil Puig, Carmen; Latasa Osta, Cristina; García Ona, Enrique; Lázaro, Isidro; Labairu, Javier; Echeverz Sarasúa, Maite; Burgui Erice, Saioa; García Martínez, Begoña; Lasa Uzcudun, Íñigo; Solano Goñi, Cristina; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua, IIM 13329.RI1
    Salmonellosis is the second most common food-borne zoonosis in the European Union, with pigs being a major reservoir of this pathogen. Salmonella control in pig production requires multiple measures amongst which vaccination may be used to reduce subclinical carriage and shedding of prevalent serovars, such as Salmonella enterica serovar Typhimurium. Live attenuated vaccine strains offer advantages in terms of enhancing cell mediated immunity and allowing inoculation by the oral route. However, main failures of these vaccines are the limited cross-protection achieved against heterologous serovars and interference with serological monitoring for infection. We have recently shown that an attenuated S. Enteritidis strain (ΔXIII) is protective against S. Typhimurium in a murine infection model. ΔXIII strain harbours 13 chromosomal deletions that make it unable to produce the sigma factor RpoS and synthesize cyclic-di-GMP (c-di-GMP). In this study, our objectives were to test the protective effects of ΔXIII strain in swine and to investigate if the use of ΔXIII permits the discrimination of vaccinated from infected pigs. Results show that oral vaccination of pre-weaned piglets with ΔXIII cross-protected against a challenge with S. Typhimurium by reducing faecal shedding and ileocaecal lymph nodes colonization, both at the time of weaning and slaughter. Vaccinated pigs showed neither faecal shedding nor tissue persistence of the vaccine strain at weaning, ensuring the absence of ΔXIII strain by the time of slaughter. Moreover, lack of the SEN4316 protein in ΔXIII strain allowed the development of a serological test that enabled the differentiation of infected from vaccinated animals (DIVA).
  • PublicationOpen Access
    Evaluation of a Salmonella strain lacking the secondary messenger c-di-GMP and RpoS as a live oral vaccine
    (Public Library of Science, 2016) Latasa Osta, Cristina; Echeverz Sarasúa, Maite; García Ona, Enrique; Burgui Erice, Saioa; Casares, Noelia; Hervás Stubbs, Sandra; Lasarte, Juan José; Lasa Uzcudun, Íñigo; Solano Goñi, Cristina; García Martínez, Begoña; Gil Puig, Carmen; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIM 13329.RI1
    Salmonellosis is one of the most important bacterial zoonotic diseases transmitted through the consumption of contaminated food, with chicken and pig related products being key reservoirs of infection. Although numerous studies on animal vaccination have been performed in order to reduce Salmonella prevalence, there is still a need for an ideal vaccine. Here, with the aim of constructing a novel live attenuated Salmonella vaccine candidate, we firstly analyzed the impact of the absence of cyclic-di-GMP (c-di-GMP) in Salmonella virulence. Cdi-GMP is an intracellular second messenger that controls a wide range of bacterial processes, including biofilm formation and synthesis of virulence factors, and also modulates the host innate immune response. Our results showed that a Salmonella multiple mutant in the twelve genes encoding diguanylate cyclase proteins that, as a consequence, cannot synthesize c-di-GMP, presents a moderate attenuation in a systemic murine infection model. An additional mutation of the rpoS gene resulted in a synergic attenuating effect that led to a highly attenuated strain, referred to as ΔXIII, immunogenic enough to protect mice against a lethal oral challenge of a S. Typhimurium virulent strain. ΔXIII immunogenicity relied on activation of both antibody and cell mediated immune responses characterized by the production of opsonizing antibodies and the induction of significant levels of IFN-γ, TNF- α, IL-2, IL-17 and IL-10. ΔXIII was unable to form a biofilm and did not survive under desiccation conditions, indicating that it could be easily eliminated from the environment. Moreover, ΔXIII shows DIVA features that allow differentiation of infected and vaccinated animals. Altogether, these results show ΔXIII as a safe and effective live DIVA vaccine
  • PublicationOpen Access
    A systematic evaluation of the two-component systems network reveals that ArlRS is a key regulator of catheter colonization by Staphylococcus aureus
    (Frontiers Media, 2018) Burgui Erice, Saioa; Gil Puig, Carmen; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; Valle Turrillas, Jaione; Ciencias de la Salud; Osasun Zientziak
    Two-component systems (TCS) are modular signal transduction pathways that allow cells to adapt to prevailing environmental conditions by modifying cellular physiology. Staphylococcus aureus has 16 TCSs to adapt to the diverse microenvironments encountered during its life cycle, including host tissues and implanted medical devices. S. aureus is particularly prone to cause infections associated to medical devices, whose surfaces coated by serum proteins constitute a particular environment. Identification of the TCSs involved in the adaptation of S. aureus to colonize and survive on the surface of implanted devices remains largely unexplored. Here, using an in vivo catheter infection model and a collection of mutants in each non-essential TCS of S. aureus, we investigated the requirement of each TCS for colonizing the implanted catheter. Among the 15 mutants in non-essential TCSs, the arl mutant exhibited the strongest deficiency in the capacity to colonize implanted catheters. Moreover, the arl mutant was the only one presenting a major deficit in PNAG production, the main exopolysaccharide of the S. aureus biofilm matrix whose synthesis is mediated by the icaADBC locus. Regulation of PNAG synthesis by ArlRS occurred through repression of IcaR, a transcriptional repressor of icaADBC operon expression. Deficiency in catheter colonization was restored when the arl mutant was complemented with the icaADBC operon. MgrA, a global transcriptional regulator downstream ArlRS that accounts for a large part of the arlRS regulon, was unable to restore PNAG expression and catheter colonization deficiency of the arlRS mutant. These findings indicate that ArlRS is the key TCS to biofilm formation on the surface of implanted catheters and that activation of PNAG exopolysaccharide production is, among the many traits controlled by the ArlRS system, a major contributor to catheter colonization.
  • PublicationOpen Access
    Evaluation of surface microtopography engineered by direct laser interference for bacterial anti-biofouling
    (2015) Valle Turrillas, Jaione; Burgui Erice, Saioa; Langheinrich, Denise; Gil Puig, Carmen; Solano Goñi, Cristina; Toledo Arana, Alejandro; Helbig, Ralf; Lasagni, Andrés; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ14066.RI1
    Biofilm formation by bacterial pathogens on the surface of medical and industrial settings is a 25 serious health problem. Modification of the biomaterial surface topography is a promising 26 strategy to prevent bacterial attachment and biofilm development. However, fabrication of 27 functional biomaterials at large scale with periodic network-topology is still problematic. In this 28 study, we use direct laser interference (DLIP), an easily scalable process, to modify polystyrene 29 surface (PS) topography at sub-micrometer scale. The resulting structure surfaces were 30 interrogated for their capacity to prevent adhesion and biofilm formation of the major human 31 pathogen Staphylococcus aureus. The results revealed that three-dimensional micrometer 32 periodic structures on PS have a profound impact on bacterial adhesion capacity. Thus, line- 33 and pillar-like topographical patterns enhanced S. aureus adhesion, whereas complex lamella 34 microtopography reduced S. aureus adhesion both in static and continuous flow culture 35 conditions. Interestingly, lamella-like textured surfaces retained the capacity to inhibit S. aureus 36 adhesion both when the surface is coated with human serum proteins in vitro and when the 37 material is implanted subcutaneously in a foreign-body associated infection model. Our results 38 establish that the DLIP technology can be used to functionalize polymeric surfaces for the 39 inhibition of bacterial adhesion to surfaces.
  • PublicationOpen Access
    Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection
    (American Society for Microbiology, 2014) Gil Puig, Carmen; Solano Goñi, Cristina; Burgui Erice, Saioa; Latasa Osta, Cristina; García Martínez, Begoña; Toledo Arana, Alejandro; Lasa Uzcudun, Íñigo; Valle Turrillas, Jaione; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ14066.RI1
    The Staphylococcus aureus biofilm mode of growth is associated with several chronic infections that are very difficult to treat due to the recalcitrant nature of biofilms to clearance by antimicrobials. Accordingly, there is an increasing interest in preventing the formation of S. aureus biofilms and developing efficient antibiofilm vaccines. Given the fact that during a biofilm-associated infection, the first primary interface between the host and the bacteria is the self-produced extracellular matrix, in this study we analyzed the potential of extracellular proteins found in the biofilm matrix to induce a protective immune response against S. aureus infections. By using proteomic approaches, we characterized the exoproteomes of exopolysaccharide-based and proteinbased biofilm matrices produced by two clinical S. aureus strains. Remarkably, results showed that independently of the nature of the biofilm matrix, a common core of secreted proteins is contained in both types of exoproteomes. Intradermal administration of an exoproteome extract of an exopolysaccharide-dependent biofilm induced a humoral immune response and elicited the production of interleukin 10 (IL-10) and IL-17 in mice. Antibodies against such an extract promoted opsonophagocytosis and killing of S. aureus. Immunization with the biofilm matrix exoproteome significantly reduced the number of bacterial cells inside a biofilm and on the surrounding tissue, using an in vivo model of mesh-associated biofilm infection. Furthermore, immunized mice also showed limited organ colonization by bacteria released from the matrix at the dispersive stage of the biofilm cycle. Altogether, these data illustrate the potential of biofilm matrix exoproteins as a promising candidate multivalent vaccine against S. aureus biofilm-associated infections.