Person: Burgui Erice, Saioa
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Burgui Erice
First Name
Saioa
person.page.departamento
Agronomía, Biotecnología y Alimentación
person.page.instituteName
ORCID
0000-0002-3601-7221
person.page.upna
810416
Name
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access In vitro modeling of polyclonal infection dynamics within the human airways by Haemophilus influenzae differential fluorescent labeling(American Society for Microbiology, 2023) Rapún Araiz, Beatriz; Sorzabal-Bellido, Ioritz; Asensio López, Javier; Lázaro-Díez, María; Ariz Galilea, Mikel; Sobejano de la Merced, Carlos; Euba, Begoña; Fernández Calvet, Ariadna; Cortés Domínguez, Iván; Burgui Erice, Saioa; Toledo Arana, Alejandro; Ortiz de Solórzano, Carlos; Garmendia García, Juncal; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCStandardized clinical procedures for antibiotic administration rely on pathogen identification and antibiotic susceptibility testing, often performed on single-colony bacterial isolates. For respiratory pathogens, this could be questionable, as chronic patients may be persistently colonized by multiple clones or lineages from the same bacterial pathogen species. Indeed, multiple strains of nontypeable Haemophilus influenzae, with different antibiotic susceptibility profiles, can be co-isolated from cystic fibrosis and chronic obstructive pulmonary disease sputum specimens. Despite this clinical evidence, we lack information about the dynamics of H. influenzae polyclonal infections, which limits the optimization of therapeutics. Here, we present the engineering and validation of a plasmid toolkit (pTBH, toolbox for Haemophilus), with standardized modules consisting of six reporter genes for fluorescent or bioluminescent labeling of H. influenzae. This plasmid set was independently introduced in a panel of genomically and phenotypically different H. influenzae strains, and two of them were used as a proof of principle to analyze mixed biofilm growth architecture and antibiotic efficacy, and to visualize the dynamics of alveolar epithelial co-infection. The mixed biofilms showed a bilayer architecture, and antibiotic efficacy correlated with the antibiotic susceptibility of the respective single-species strains. Furthermore, differential kinetics of bacterial intracellular location within subcellular acidic compartments were quantified upon co-infection of cultured airway epithelial cells. Overall, we present a panel of novel plasmid tools and quantitative image analysis methods with the potential to be used in a whole range of bacterial host species, assay types, and¿or conditions and generate meaningful information for clinically relevant settings.Publication Open Access Evaluation of surface microtopography engineered by direct laser interference for bacterial anti-biofouling(2015) Valle Turrillas, Jaione; Burgui Erice, Saioa; Langheinrich, Denise; Gil Puig, Carmen; Solano Goñi, Cristina; Toledo Arana, Alejandro; Helbig, Ralf; Lasagni, Andrés; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ14066.RI1Biofilm formation by bacterial pathogens on the surface of medical and industrial settings is a 25 serious health problem. Modification of the biomaterial surface topography is a promising 26 strategy to prevent bacterial attachment and biofilm development. However, fabrication of 27 functional biomaterials at large scale with periodic network-topology is still problematic. In this 28 study, we use direct laser interference (DLIP), an easily scalable process, to modify polystyrene 29 surface (PS) topography at sub-micrometer scale. The resulting structure surfaces were 30 interrogated for their capacity to prevent adhesion and biofilm formation of the major human 31 pathogen Staphylococcus aureus. The results revealed that three-dimensional micrometer 32 periodic structures on PS have a profound impact on bacterial adhesion capacity. Thus, line- 33 and pillar-like topographical patterns enhanced S. aureus adhesion, whereas complex lamella 34 microtopography reduced S. aureus adhesion both in static and continuous flow culture 35 conditions. Interestingly, lamella-like textured surfaces retained the capacity to inhibit S. aureus 36 adhesion both when the surface is coated with human serum proteins in vitro and when the 37 material is implanted subcutaneously in a foreign-body associated infection model. Our results 38 establish that the DLIP technology can be used to functionalize polymeric surfaces for the 39 inhibition of bacterial adhesion to surfaces.Publication Open Access Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection(American Society for Microbiology, 2014) Gil Puig, Carmen; Solano Goñi, Cristina; Burgui Erice, Saioa; Latasa Osta, Cristina; García Martínez, Begoña; Toledo Arana, Alejandro; Lasa Uzcudun, Íñigo; Valle Turrillas, Jaione; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ14066.RI1The Staphylococcus aureus biofilm mode of growth is associated with several chronic infections that are very difficult to treat due to the recalcitrant nature of biofilms to clearance by antimicrobials. Accordingly, there is an increasing interest in preventing the formation of S. aureus biofilms and developing efficient antibiofilm vaccines. Given the fact that during a biofilm-associated infection, the first primary interface between the host and the bacteria is the self-produced extracellular matrix, in this study we analyzed the potential of extracellular proteins found in the biofilm matrix to induce a protective immune response against S. aureus infections. By using proteomic approaches, we characterized the exoproteomes of exopolysaccharide-based and proteinbased biofilm matrices produced by two clinical S. aureus strains. Remarkably, results showed that independently of the nature of the biofilm matrix, a common core of secreted proteins is contained in both types of exoproteomes. Intradermal administration of an exoproteome extract of an exopolysaccharide-dependent biofilm induced a humoral immune response and elicited the production of interleukin 10 (IL-10) and IL-17 in mice. Antibodies against such an extract promoted opsonophagocytosis and killing of S. aureus. Immunization with the biofilm matrix exoproteome significantly reduced the number of bacterial cells inside a biofilm and on the surrounding tissue, using an in vivo model of mesh-associated biofilm infection. Furthermore, immunized mice also showed limited organ colonization by bacteria released from the matrix at the dispersive stage of the biofilm cycle. Altogether, these data illustrate the potential of biofilm matrix exoproteins as a promising candidate multivalent vaccine against S. aureus biofilm-associated infections.Publication Open Access Noncontiguous operon is a genetic organization for coordinating bacterial gene expression(National Academy of Sciences, 2019) Sáenz Lahoya, S.; Bitarte Manzanal, Nerea; García, Beñat; Burgui Erice, Saioa; Vergara Irigaray, Marta; Valle Turrillas, Jaione; Solano Goñi, Cristina; Toledo Arana, Alejandro; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaBacterial genes are typically grouped into operons defined as clusters of adjacent genes encoding for proteins that fill related roles and are transcribed into a single polycistronic mRNA molecule. This simple organization provides an efficient mechanism to coordinate the expression of neighboring genes and is at the basis of gene regulation in bacteria. Here, we report the existence of a higher level of organization in operon structure that we named noncontiguous operon and consists in an operon containing a gene(s) that is transcribed in the opposite direction to the rest of the operon. This transcriptional architecture is exemplified by the genes menE-menC-MW1733-ytkD-MW1731 involved in menaquinone synthesis in the major human pathogen Staphylococcus aureus. We show that menE-menC-ytkD-MW1731 genes are transcribed as a single transcription unit, whereas the MW1733 gene, located between menC and ytkD, is transcribed in the opposite direction. This genomic organization generates overlapping transcripts whose expression is mutually regulated by transcriptional interference and RNase III processing at the overlapping region. In light of our results, the canonical view of operon structure should be revisited by including this operon arrangement in which cotranscription and overlapping transcription are combined to coordinate functionally related gene expression.