Albiac Alesanco, Fernando José

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Albiac Alesanco

First Name

Fernando José

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Greedy approximation for biorthogonal systems in quasi-Banach spaces
    (Instytut Matematyczny, 2021) Albiac Alesanco, Fernando José; Ansorena, José L.; Berná, Pablo M.; Wojtaszczyk, Przemyslaw; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas
    The general problem addressed in this work is the development of a systematic study of the thresholding greedy algorithm for general biorthogonal systems in quasi-Banach spaces from a functional-analytic point of view. If (Formula Presented) is a biorthogonal system in X then for each x ∈ X we have a formal expansion (Formula Presented). The thresholding greedy algorithm (with threshold ε > 0) applied to x is formally defined as (Formula Presented). The properties of this operator give rise to the different classes of greedy-type bases. We revisit the concepts of greedy, quasi-greedy, and almost greedy bases in this comprehensive framework and provide the (non-trivial) extensions of the corresponding characterizations of those types of bases. As a by-product of our work, new properties arise, and the relations among them are carefully discussed.
  • PublicationOpen Access
    Quasi-greedy bases in ℓp (0 < p < 1) are democratic
    (Elsevier, 2020) Albiac Alesanco, Fernando José; Ansorena, José L.; Wojtaszczyk, Przemyslaw; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas
    The list of known Banach spaces whose linear geometry determines the (nonlinear) democracy functions of their quasi-greedy bases to the extent that they end up being democratic, reduces to c0, ℓ2, and all separable L1-spaces. Oddly enough, these are the only Banach spaces that, when they have an unconditional basis, it is unique. Our aim in this paper is to study the connection between quasi-greediness and democracy of bases in non-locally convex spaces. We prove that all quasi-greedy bases in ℓp for 0