Gómez Arrebola, Carmen

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Gómez Arrebola

First Name

Carmen

person.page.departamento

Ciencias

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Regulation of gene expression by non-phosphorylated response regulators
    (Institut d'Estudis Catalans, 2021) Gómez Arrebola, Carmen; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; Ciencias de la Salud; Osasun Zientziak
    Two-component systems (TCSs) are a prominent sensory system in bacteria. A prototypical TCS comprises a membrane-bound sensor histidine kinase (HK) responsible for sensing the signal and a cytoplasmic response regulator (RR) that controls target gene expression. Signal binding activates a phosphotransfer cascade from the HK to the RR. As a result, the phosphorylated RR undergoes a conformational change that leads to activation of the response. Growing experimental evidence indicates that unphosphorylated RRs may also have regulatory functions, and thus, the classical view that the RR is only active when it is phosphorylated needs to be revisited. In this review, we highlight the most recent findings showing that RRs in the non-phosphorylated state control critical bacterial processes that range from secretion of factors to the host, antibiotic resistance, iron transport, stress response, and cell-wall metabolism to biofilm development.
  • PublicationOpen Access
    Staphylococcus aureus susceptibility to complestatin and corbomycin depends on the VraSR two-component system
    (American Society for Microbiology, 2023) Gómez Arrebola, Carmen; Hernández, Sara B.; Culp, Elizabeth J.; Wright, Gerard D.; Solano Goñi, Cristina; Cava, Felipe; Lasa Uzcudun, Íñigo; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The overuse of antibiotics in humans and livestock has driven the emergence and spread of antimicrobial resistance and has therefore prompted research on the discovery of novel antibiotics. Complestatin (Cm) and corbomycin (Cb) are glycopeptide antibiotics with an unprecedented mechanism of action that is active even against methicillin-resistant and daptomycin-resistant Staphylococcus aureus. They bind to peptidoglycan and block the activity of peptidoglycan hydrolases required for remodeling the cell wall during growth. Bacterial signaling through two-component transduction systems (TCSs) has been associated with the development of S. aureus antimicrobial resistance. However, the role of TCSs in S. aureus susceptibility to Cm and Cb has not been previously addressed. In this study, we determined that, among all 16 S. aureus TCSs, VraSR is the only one controlling the susceptibility to Cm and Cb. Deletion of vraSR increased bacterial susceptibility to both antibiotics. Epistasis analysis with members of the vraSR regulon revealed that deletion of spdC, which encodes a membrane protein that scaffolds SagB for cleavage of peptidoglycan strands to achieve physiological length, in the vraSR mutant restored Cm and Cb susceptibility to wild-type levels. Moreover, deletion of either spdC or sagB in the wild-type strain increased resistance to both antibiotics. Further analyses revealed a significant rise in the relative amount of peptidoglycan and its total degree of cross-linkage in ΔspdC and ΔsagB mutants compared to the wild-type strain, suggesting that these changes in the cell wall provide resistance to the damaging effect of Cm and Cb.