Ferrero Jaurrieta, Mikel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Ferrero Jaurrieta
First Name
Mikel
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
1 results
Search Results
Now showing 1 - 1 of 1
Publication Embargo Multivalued and non-symmetric operators for sequential information processing(2024) Ferrero Jaurrieta, Mikel; López Molina, Carlos; Takáč, Zdenko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaLas estructuras de datos multivaluadas son un tipo de organización de datos que permiten representar información compuesta por varios atributos, variables, dimensiones o coordenadas. Para su funcionamiento básico se dotan de operaciones básicas como la igualdad, comparación y orden. A partir de estas se definen operaciones como, por ejemplo, la agregación de información. Un tipo de dato multivaluado de especial interés es la información secuencial, en el cual existe una dependencia temporal, espacial o de orden entre sus elementos. Ejemplos relevantes de información secuencial son el texto (lenguaje natural) o las series temporales. En esta tesis presentamos un nuevo framework para información multivaluada. De esta manera, presentamos nuevos métodos de agregación de información multivaluada. Para ello, se extienden funciones que tienen en cuenta la posible relación entre los datos internos a la estructura multivaluada. Dado que estas funciones necesitan una ordenación de sus argumentos, se presentan distintos enfoques: por componentes individuales y proponiendo un nuevo método de ordenación. Estas funciones se aplican en la fusión de información secuencial en redes neuronales recurrentes. En el contexto multivaluado también se presenta un nuevo método para la comparación de estructuras multivaluadas. De forma complementaria, se considera un problema adicional en el procesamiento de información secuencial: la simetría. Se considera que, en la agregación de información secuencial, el orden de los argumentos es una cuestión de gran relevancia. Por lo tanto, el uso de funciones simétricas no tiene sentido, dado que puede que estemos rompiendo la correlación temporal. Por ello, se presentan nuevos métodos de construcción de funciones de agregación no-simétricas. Estas serán aplicadas en tareas de agregación de información con dependencia secuencial, como puede ser el procesamiento de texto en redes neuronales convolucionales y la combinación de modelos de predicción de series temporales.