Mariñelarena Ollacarizqueta, Jon
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Mariñelarena Ollacarizqueta
First Name
Jon
person.page.departamento
Ingeniería Eléctrica y Electrónica
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Cost-effective Brillouin optical time-domain analysis sensor using a single optical source and passive optical filtering(Hindawi Publishing Corporation, 2016) Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Mariñelarena Ollacarizqueta, Jon; Sagüés García, Mikel; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe present a simplified configuration for distributed Brillouin optical time-domain analysis sensors that aims to reduce the cost of the sensor by reducing the number of components required for the generation of the two optical waves involved in the sensing process. Te technique is based on obtaining the pump and probe waves by passive optical filtering of the spectral components generated in a single optical source that is driven by a pulsed RF signal. Te optical source is a compact laser with integrated electroabsorption modulator and the optical filters are based on fiber Bragg gratings. Proof-of-concept experiments demonstrate 1m spatial resolution over a 20km sensing fiber with a 0.9MHz precision in the measurement of the Brillouin frequency shiſt, a performance similar to that of much more complex setups. Furthermore, we discuss the factors limiting the sensor performance, which are basically related to residual spectral components in the filtering process.Publication Open Access Gain dependence of measured spectra in coherent Brillouin optical time-domain analysis sensors(SPIE, 2016) Mariñelarena Ollacarizqueta, Jon; Urricelqui Polvorinos, Javier; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe report on the effects of large pump pulse powers on Brillouin optical time-domain analysis (BOTDA) sensors based on phase-modulated probe wave and coherent detection. It is found that the large Brillouin gain that comes from the use of high power pulses induces a narrowing of the RF phase-shift spectrum that is measured in these sensors. This narrowing leads to a Brillouin frequency shift measurement error when the sensor is configured for dynamic measurements. However, the effect has been found to be less significant than that observed in dynamic slope-assisted BOTDA sensors based on amplitude.Publication Open Access Gain dependence of the phase-shift spectra measured in coherent Brillouin optical time-domain analysis sensors(IEEE, 2016) Mariñelarena Ollacarizqueta, Jon; Urricelqui Polvorinos, Javier; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe report on the effects of large pump pulse powers on Brillouin optical time-domain analysis (BOTDA) sensors based on phase-modulated probe wave and coherent self-heterodyne detection. These sensors are particularly suitable to perform dynamic strain and temperature measurements because the radio-frequency (RF) signal that is obtained when the probe wave is detected has a phase-shift spectrum that is independent to first order of the Brillouin gain. Therefore, a fixed optical frequency separation between pump and probe wave can be deployed and uses the stable RF phase-shift spectrum to obtain the Brillouin frequency shift (BFS) from measured changes in the probe RF phase-shift. However, in this paper, it is found that there is a narrowing of the RF phase-shift spectrum that depends on the Brillouin gain. This effect becomes significant when very high power pulses are used and the resultant large gain induces a narrowing of the RF phase-shift spectrum. This narrowing leads to a BFS measurement error when the sensor is configured for dynamic measurements. We analyze, theoretically and experimentally, the origins and the magnitude of the narrowing of RF phase-shift spectra for high pump pulses in a coherent BOTDA sensor. Furthermore, this spectral shape change is compared to the broadening of the gain spectrum that has been recently discovered in conventional direct-detection BOTDA sensors, which is linearly dependent on the pulse peak power injected to the fiber, finding that the spectral shape change is less significant in coherent BOTDA sensors. Finally, we quantify the BFS measurement error that it can induce and find the trade-offs to keep it below a certain threshold. It is found that, from a practical point of view, this effect is significant for short fibers, where nonlinear effects are negligible and large pump pulses can be used.Publication Open Access Non-local effects in Brillouin optical time-domain analysis sensors(MDPI, 2017) Iribas Pardo, Haritz; Urricelqui Polvorinos, Javier; Mompó Roselló, Juan José; Mariñelarena Ollacarizqueta, Jon; Loayssa Lara, Alayn; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaBrillouin optical time-domain analysis (BOTDA) sensors have great potential to provide distributed measurements of temperature and strain over large structures with high spatial resolution and measurement precision. However, their performance ultimately depends on the amount of probe and pump pulse power that can be injected into the sensing fiber, which determines the signal-to-noise ratio of the detected measurement signal. The probe wave power is constrained by the generation of noise induced by spontaneous Brillouin scattering and at lower power by the so-called non-local effects. In this work, we focus on the latter. We review the physical origins of non-local effects and analyze the performance impairments that they bring. In addition, we discuss the different methods that have been proposed to counteract these effects comparing their relative merits and ultimate performance. Particularly, we focus on a technique that we have devised to compensate non-local effects which is based on introducing an optical frequency modulation or dithering to the probe wave. This method is shown to provide a comprehensive solution to most of the impairments associated with non-local effects and also to enable some side benefits, such as amplification of the pump pulses to compensate the attenuation of the fiber.