Mariñelarena Ollacarizqueta, Jon

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Mariñelarena Ollacarizqueta

First Name

Jon

person.page.departamento

Ingeniería Eléctrica y Electrónica

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Enhancement of the dynamic range in slope-assisted coherent brillouin optical time-domain analysis sensors
    (IEEE, 2017) Mariñelarena Ollacarizqueta, Jon; Urricelqui Polvorinos, Javier; Loayssa Lara, Alayn; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We present two techniques that provide an extension of the dynamic range of coherent Brillouin optical time-domain analysis (BOTDA) sensors for dynamic measurements. This type of BOTDA sensors rely on self-heterodyne detection of a phase-modulated probe wave and the dynamic range for fast measurements is limited to the linear region of the RF phase-shift spectrum measured. The first method for range extension that we introduce is based on launching pump pulses containing multiple frequency components. This makes the Brillouin spectra generated by each component to overlap, providing a wider linear region of the detected RF phase-shift spectrum and allowing to measure larger Brillouin frequency shift variations. The second method relies on shortening the length of the pump pulses, which leads to the broadening of the detected RF spectra. The theoretical fundamentals of both range enhancing techniques are presented. Moreover, we experimentally demonstrate that they provide a threefold to fourfold enhancement in the dynamic range. Finally, the factors limiting their performance are determined: for the multi-frequency pump pulse technique, it is the worsening of Kerr non-linear effects due to the simultaneous propagation of multiple spectral components in the fiber, and, for the pulse-shortening method, it is the signal-to-noise ratio penalty linked to the reduction of the magnitude of the Brillouin interaction.
  • PublicationOpen Access
    Pulse coding linearization for Brillouin optical time-domain analysis sensors
    (Optical Society of America, 2018) Mariñelarena Ollacarizqueta, Jon; Iribas Pardo, Haritz; Loayssa Lara, Alayn; Institute of Smart Cities - ISC
    We introduce a simple method to extend the performance of pulse coding techniques in their application to Brillouin optical time-domain analysis sensors (BOTDA). It is based on applying a simple logarithmic processing on the detected probe wave that compensates the deviation from linearity of the sensor response for long code lengths. The technique ensures that the accumulated effect of a sequence of pulses is equal to the linear addition of the effects of the individual components, which is the essential condition to ensure a correct decoding of the probe gain measurement. We experimentally demonstrate the compensation of the Brillouin frequency shift error induced by the accumulated gain nonlinearity. Furthermore, a proof-of-concept 80 km sensing link within a total 200 km fiber loop demonstrated a better than 2 MHz precision with 2 m spatial resolution.