Person:
Espinal Viguri, Maialen

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Espinal Viguri

First Name

Maialen

person.page.departamento

Ciencias

ORCID

0000-0003-0227-9458

person.page.upna

811866

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    New hybrid organochlorinated xerogels
    (2021) Cruz Quesada, Guillermo; Espinal Viguri, Maialen; López Ramón, María Victoria; Garrido Segovia, Julián José; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    Hybrid silica xerogels (HSXG) combine the properties of organic and inorganic components in the same material, which makes them promising and versatile candidates for multiple applications. These materials can be easily prepared by the sol-gel process, which offers the possibility to obtain different morphologies. The incorporation of organic precursors plays an important role in their properties, hence, allowing the design of materials for specific applications such as coatings for optical fibers [1]. The aim of this work was to study the influence of the alkyl chain and chlorine atom on the morphological and textural properties of various hybrid materials produced by co-condensation. For this purpose, three series of hybrid xerogels were prepared by co-condensation of TEOS and a chloroalkyltriethoxysilane (TEOS:ClRTEOS, R = methyl, ethyl or propyl) at different molar ratios. The influence of the precursors on the structure and textural properties of the xerogels was studied by means of N2 adsorption, XRD (X-ray diffraction), 29Si NMR (nuclear magnetic resonance) and FE-SEM (Field Emission-scanning electron microscope) [2].
  • PublicationOpen Access
    Hybrid xerogels: study of the sol-gel process and local structure by vibrational spectroscopy
    (MDPI, 2021) Cruz Quesada, Guillermo; Espinal Viguri, Maialen; López Ramón, María Victoria; Garrido Segovia, Julián José; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The properties of hybrid silica xerogels obtained by the sol-gel method are highly dependent on the precursor and the synthesis conditions. This study examines the influence of organic substituents of the precursor on the sol-gel process and determines the structure of the final materials in xerogels containing tetraethyl orthosilicate (TEOS) and alkyltriethoxysilane or chloroalkyltri-ethoxysilane at different molar percentages (RTEOS and ClRTEOS, R = methyl [M], ethyl [E], or propyl [P]). The intermolecular forces exerted by the organic moiety and the chlorine atom of the precursors were elucidated by comparing the sol-gel process between alkyl and chloroalkyl series. The microstructure of the resulting xerogels was explored in a structural theoretical study using Fourier transformed infrared spectroscopy and deconvolution methods, revealing the distribution of (SiO)4 and (SiO)6 rings in the silicon matrix of the hybrid xerogels. The results demonstrate that the alkyl chain and the chlorine atom of the precursor in these materials determines their inductive and steric effects on the sol-gel process and, therefore, their gelation times. Furthermore, the distribution of (SiO)4 and (SiO)6 rings was found to be consistent with the data from the X-ray diffraction spectra, which confirm that the local periodicity associated with four-fold rings increases with higher percentage of precursor. Both the sol-gel process and the ordered domains formed determine the final structure of these hybrid materials and, therefore, their properties and potential applications.