Cabeza Laguna, Rafael
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Cabeza Laguna
First Name
Rafael
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Synthetic gaze data augmentation for improved user calibration(Springer, 2021) Garde Lecumberri, Gonzalo; Larumbe Bergera, Andoni; Porta Cuéllar, Sonia; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this paper, we focus on the calibration possibilitiesó of a deep learning based gaze estimation process applying transfer learning, comparing its performance when using a general dataset versus when using a gaze specific dataset in the pretrained model. Subject calibration has demonstrated to improve gaze accuracy in high performance eye trackers. Hence, we wonder about the potential of a deep learning gaze estimation model for subject calibration employing fine-tuning procedures. A pretrained Resnet-18 network, which has great performance in many computer vision tasks, is fine-tuned using user’s specific data in a few shot adaptive gaze estimation approach. We study the impact of pretraining a model with a synthetic dataset, U2Eyes, before addressing the gaze estimation calibration in a real dataset, I2Head. The results of the work show that the success of the individual calibration largely depends on the balance between fine-tuning and the standard supervised learning procedures and that using a gaze specific dataset to pretrain the model improves the accuracy when few images are available for calibration. This paper shows that calibration is feasible in low resolution scenarios providing outstanding accuracies below 1.5 ∘ ∘ of error.Publication Open Access Beyond basic tuning: exploring discrepancies in user and setup calibration for gaze estimation(Association for Computing Machinery, 2024-06-04) Garde Lecumberri, Gonzalo; Armendáriz Armenteros, José María; Beruete Cerezo, Rubén; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio IngeniaritzaCalibrating gaze estimation models is crucial to maximize the effectiveness of these systems, although its implementation also poses challenges related to usability. Therefore, the simplification of this process is key. In this work, we dissect the impact of calibration due to both the environment and the user in gaze estimation models that employ general-purpose devices. We aim to replicate a workflow close to the final application by starting with pre-trained models and subsequently calibrating them using different strategies, testing under various camera arrangements and user-specific variability. The results indicate differentiation between the impact due to the user and the setup, being the components due to the users a slightly more pronounced impact than those related to the setup, opening the door to understanding calibration as a composite process. In any case, the development of calibration-free remote gaze estimation solutions remains a great challenge, given the crucial role of calibration.