(Public Library of Science, 2016) Taglialegna, Agustina; Navarro, Susanna; Ventura, Salvador; Garnett, James A.; Matthews, Steve; Penadés, José R.; Lasa Uzcudun, Íñigo; Valle Turrillas, Jaione; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
Major components of the biofilm matrix scaffold are proteins that assemble to create a unified structure that maintain bacteria attached to each other and to surfaces. We provide evidence that a surface protein present in several staphylococcal species forms functional amyloid aggregates to build the biofilm matrix in response to specific environmental conditions. Under low Ca2+ concentrations and acidic pH, Bap is processed and forms insoluble aggregates with amyloidogenic properties. When the Ca2+ concentration increases, metal-coordinated Bap adopts a structurally more stable conformation and as a consequence, the N-terminal region is unable to assemble into amyloid aggregates. The control of Bap cleavage and assembly helps to regulate biofilm matrix development as a function of environmental changes.