Taglialegna, Agustina

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Taglialegna

First Name

Agustina

person.page.departamento

Producción Agraria

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Bacterial biofilm functionalization through Bap amyloid engineering
    (Springer Nature, 2022) Matilla Cuenca, Leticia; Taglialegna, Agustina; Gil Puig, Carmen; Toledo Arana, Alejandro; Lasa Uzcudun, Íñigo; Valle Turrillas, Jaione; Ciencias de la Salud; Osasun Zientziak
    Biofilm engineering has emerged as a controllable way to fabricate living structures with programmable functionalities. The amyloidogenic proteins comprising the biofilms can be engineered to create self-assembling extracellular functionalized surfaces. In this regard, facultative amyloids, which play a dual role in biofilm formation by acting as adhesins in their native conformation and as matrix scaffolds when they polymerize into amyloid-like fibrillar structures, are interesting candidates. Here, we report the use of the facultative amyloid-like Bap protein of Staphylococcus aureus as a tool to decorate the extracellular biofilm matrix or the bacterial cell surface with a battery of functional domains or proteins. We demonstrate that the localization of the functional tags can be change by simply modulating the pH of the medium. Using Bap features, we build a tool for trapping and covalent immobilizing molecules at bacterial cell surface or at the biofilm matrix based on the SpyTag/SpyCatcher system. Finally, we show that the cell wall of several Gram-positive bacteria could be functionalized through the external addition of the recombinant engineered Bap-amyloid domain. Overall, this work shows a simple and modulable system for biofilm functionalization based on the facultative protein Bap. © 2022, The Author(s).
  • PublicationOpen Access
    Staphylococcal Bap proteins build amyloid scaffold biofilm matrices in response to environmental signals
    (Public Library of Science, 2016) Taglialegna, Agustina; Navarro, Susanna; Ventura, Salvador; Garnett, James A.; Matthews, Steve; Penadés, José R.; Lasa Uzcudun, Íñigo; Valle Turrillas, Jaione; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Major components of the biofilm matrix scaffold are proteins that assemble to create a unified structure that maintain bacteria attached to each other and to surfaces. We provide evidence that a surface protein present in several staphylococcal species forms functional amyloid aggregates to build the biofilm matrix in response to specific environmental conditions. Under low Ca2+ concentrations and acidic pH, Bap is processed and forms insoluble aggregates with amyloidogenic properties. When the Ca2+ concentration increases, metal-coordinated Bap adopts a structurally more stable conformation and as a consequence, the N-terminal region is unable to assemble into amyloid aggregates. The control of Bap cleavage and assembly helps to regulate biofilm matrix development as a function of environmental changes.