Person: Bossavit, Benoît
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Bossavit
First Name
Benoît
person.page.departamento
Ingeniería Matemática e Informática
person.page.instituteName
ORCID
0000-0003-1236-3020
person.page.upna
810460
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Low-cost eye tracking calibration: a knowledge-based study(MDPI, 2021) Garde Lecumberri, Gonzalo; Larumbe Bergera, Andoni; Bossavit, Benoît; Porta Cuéllar, Sonia; Cabeza Laguna, Rafael; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenSubject calibration has been demonstrated to improve the accuracy in high-performance eye trackers. However, the true weight of calibration in off-the-shelf eye tracking solutions is still not addressed. In this work, a theoretical framework to measure the effects of calibration in deep learning-based gaze estimation is proposed for low-resolution systems. To this end, features extracted from the synthetic U2Eyes dataset are used in a fully connected network in order to isolate the effect of specific user’s features, such as kappa angles. Then, the impact of system calibration in a real setup employing I2Head dataset images is studied. The obtained results show accuracy improvements over 50%, probing that calibration is a key process also in low-resolution gaze estimation scenarios. Furthermore, we show that after calibration accuracy values close to those obtained by high-resolution systems, in the range of 0.7°, could be theoretically obtained if a careful selection of image features was performed, demonstrating significant room for improvement for off-the-shelf eye tracking systemsPublication Open Access Gaze estimation problem tackled through synthetic images(Association for Computing Machinery (ACM), 2020) Garde Lecumberri, Gonzalo; Larumbe Bergera, Andoni; Bossavit, Benoît; Cabeza Laguna, Rafael; Porta Cuéllar, Sonia; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this paper, we evaluate a synthetic framework to be used in the field of gaze estimation employing deep learning techniques. The lack of sufficient annotated data could be overcome by the utilization of a synthetic evaluation framework as far as it resembles the behavior of a real scenario. In this work, we use U2Eyes synthetic environment employing I2Head datataset as real benchmark for comparison based on alternative training and testing strategies. The results obtained show comparable average behavior between both frameworks although significantly more robust and stable performance is retrieved by the synthetic images. Additionally, the potential of synthetically pretrained models in order to be applied in user's specific calibration strategies is shown with outstanding performances.Publication Open Access U2Eyes: a binocular dataset for eye tracking and gaze estimation(IEEE, 2019) Porta Cuéllar, Sonia; Bossavit, Benoît; Cabeza Laguna, Rafael; Larumbe Bergera, Andoni; Garde Lecumberri, Gonzalo; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenTheory shows that huge amount of labelled data are needed in order to achieve reliable classification/regression methods when using deep/machine learning techniques. However, in the eye tracking field, manual annotation is not a feasible option due to the wide variability to be covered. Hence, techniques devoted to synthesizing images show up as an opportunity to provide vast amounts of annotated data. Considering that the well-known UnityEyes tool provides a framework to generate single eye images and taking into account that both eyes information can contribute to improve gaze estimation accuracy we present U2Eyes dataset, that is publicly available. It comprehends about 6 million of synthetic images containing binocular data. Furthermore, the physiology of the eye model employed is improved, simplified dynamics of binocular vision are incorporated and more detailed 2D and 3D labelled data are provided. Additionally, an example of application of the dataset is shown as work in progress. Employing U2Eyes as training framework Supervised Descent Method (SDM) is used for eyelids segmentation. The model obtained as result of the training process is then applied on real images from GI4E dataset showing promising results.