Reinoso, Santiago
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Reinoso
First Name
Santiago
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Zirconia-supported 11-molybdovanadophosphoric acid catalysts: effect of the preparation method on their catalytic activity and selectivity(Wiley, 2018) El Bakkali, Bouchra; Trautwein, Guido; Alcañiz Monge, Juan; Reinoso, Santiago; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako GobernuaThe oxidation of adamantane with hydrogen peroxide catalyzed by zirconia-supported 11-molybdovanadophosphoric acid is shown to be a suitable green route for the synthesis of adamantanol and adamantanone. This work evaluates how the catalyst activity and selectivity are affected by some of its preparative parameters, such as the method for supporting the catalytically active heteropoly acid over the zirconia matrix or the pretreatments applied to the resulting materials before being used as heterogeneous catalysts. Our results indicate that the most effective catalysts able to maintain their activity after several reaction runs are those prepared by following the sol-gel route, whereas the most selective catalysts are those obtained by impregnation methods. Moreover, the calcination temperature has also been identified as a relevant parameter influencing the performance of catalysts based on supported heteropoly acids. The increasing catalytic activity observed over several consecutive reaction runs has been attributed to the formation of peroxo derivatives of polyoxometalate clusters at the surface of the catalyst and their accumulation after each reaction cycle.Publication Open Access A simple approach to develop tailored mesoporosity in nanostructured heteropolysalts(Wiley, 2017) Alcañiz Monge, Juan; Trautwein, Guido; El Bakkali, Bouchra; Reinoso, Santiago; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this study, we describe a very simple approach to the development of tailored mesoporosity in any nanostructured heteropolysalt with control over both the mesoporous volume and the pore size. This approach, which consists in the treatment of a solid microporous precursor with a basic agent, has been tested on the ammonium salt of the Keggin‐type [PMo12O40]3− heteropolyanion and constitutes a novel procedure for the preparation of mesoporous solids with no precedents. The results obtained in this study allow two main conclusions to be drawn: 1) the micro‐ and mesoporous structures in the heteropolysalt nanoparticles are independent from each other and 2) the development of mesoporosity in the solid material must be related to a process of alkaline degradation within the core of the nanocrystals that aggregate into the particles. These results afford valuable additional information to the present model of porosity that has been established for heteropolysalts.Publication Open Access Polyoxometalates in catalysis(Jenny Stanford Publishing, 2022) Alcañiz Monge, Juan; Reinoso, Santiago; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2This chapter will focus on providing a basis for understanding the mechanisms involved in the catalysis carried out by selected polyoxometalate (POM)-based compounds. The catalysts discussed herein will be either insoluble POM salts or POM clusters heterogenized on porous solid supports, including activated carbon materials and metallic oxides such as zirconia. The influence on the catalytic activity of both the POM catalytic species and the active porous support will be the main aspects to be commented and analyzed in detail within the chapter.