Reinoso, Santiago

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Reinoso

First Name

Santiago

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    From fundamental materials chemistry to sensing applications: unravelling the water adsorption mechanism of a luminescent optical fibre sensor membrane
    (Elsevier, 2024) Cruz Quesada, Guillermo; Rosales Reina, María Beatriz; López Torres, Diego; Reinoso, Santiago; López Ramón, María Victoria; Arzamendi Manterola, Gurutze; Elosúa Aguado, César; Espinal Viguri, Maialen; Garrido Segovia, Julián José; Ciencias; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Zientziak; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This work provides insight into the correlation between the luminescent response of a water-vapour optical fibre sensor and the textural properties of its lanthanide-doped silica coating. To this end, a library of 16 silica xerogels derived from combinations between 2 lanthanide dopants (EuIII, TbIII) and 8 antenna ligands was synthesised and characterised by photoluminescence spectroscopy and N2 and CO2 adsorption-desorption isotherms, among others. Based on the best luminescent response and most-suited porous texture, the material doped with TbIII and 2,2′-(4-(2-Ethoxyethoxy)pyridine-2,6-diyl)bis(4,5-dihydrooxazole) was selected to construct the probe. A film of this material was affixed to a commercial silica fibre by dip-coating and the resulting sensor was tested in a climatic chamber with relative humidity ranging from 20 to 90% to obtain normalised time-response and calibration curves at three temperatures. The response was linear up to certain water-vapour concentrations, beyond which abruptly changed to polynomial, acting against the sensor resolution. The adsorption mechanism was elucidated by comparing the isosteric enthalpies of adsorption calculated from the sensor calibration curves to those determined from the monolith water-vapour isotherms, revealing that capillary condensation in the membrane mesopores was the key phenomenon leading to the response deviating from linearity.