Reinoso, Santiago
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Reinoso
First Name
Santiago
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
15 results
Search Results
Now showing 1 - 10 of 15
Publication Open Access Polioxometalatoak ingurune urtsuan: egitura esanguratsuenak(Universidad de País Vasco, 2021) Ruiz-Bilbao, E.; Fernández Navarro, Leticia; Artetxe, Beñat; San-Felices, L.; Reinoso, Santiago; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2Polioxometalatoen (POMen) konposizio eta egitura aniztasun ikaragarria, ur disoluzioan aurkezten dituzten oreka kimiko dinamikoen emaitza dira. Izan ere, beraien eraketa prozesuak ingurune azidotan gertatzen diren oxoanioien kondentsazio konplexuetan oinarrituta daude eta ondorioz, pH baldintza jakinetan zenbait metal-oxigeno kluster ezberdin daude orekan. Hortaz, POMei dagozkien topologia garrantzitsuenen ikuspegi orokorra aurkezten da lan honetan, pHaren arabera ur disoluzioan agertzen diren espezie nagusiei erreparatuz. Lehenik, ohiko iso- eta hetero-polioxobanadato, -polioxomolibdato eta ¿polioxowolframatoak aztertu dira eta bukatzeko hain konbentzionalak ez diren POM familietan jarri da arreta; hala nola, molibdato erraldoiak, uranio peroxo-klusterrak eta metal noblez osatutako egiturak..Publication Open Access Electrical conduction mechanism in carbon-ceramic composites(Elsevier, 2023) Alcañiz Monge, Juan; Gil-Muñoz, Gema; Trautwein, Guido; Reinoso, Santiago; Institute for Advanced Materials and Mathematics - INAMAT2Carbon-ceramic composites (C/Cer) have been prepared by chemical vapor deposition of coal tar pitch onto clay substrates and characterized by thermogravimetric analyses, powder X-ray diffraction, Raman spectroscopy, and scanning and transmission electron microscopies (SEM and TEM). The study of the dc electrical conductivity, together with the determination of the Hall voltage sign, proves that such C/Cer composites are n-type semiconductors. Our results demonstrate that: 1) the mechanism of electrical conduction of C/Cer semiconductors proceeds through the pathways expected for amorphous solids (ie. variable-range hopping and heat-activated pathways at low and high temperatures, respectively); and 2) their transport properties are strongly dependent on the clay components, as evidenced by microscopy experiments.Publication Open Access Crystal-to-crystal polymerisation of monosubstituted [PW11O39Cu(H2O)]5- Keggin-type anions(Royal Society of Chemistry, 2024) Ruiz Bilbao, Estíbaliz; Pache, Aroa; Barrenechea, Unai; Reinoso, Santiago; San Felices, Leire; Vivanco, Maria dM.; Lezama, Luis; Artetxe, Beñat; Gutiérrez Zorrilla, Juan M.; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2The reaction between neutral bis(picolinate)copper(ii) complexes and copper(ii)-monosubstituted Keggin-type phosphotungstate anions formed in situ leads to the formation of the hybrid [C(NH2)3]10[{PW11O39Cu(H2O)}2{Cu(pic)2}]·10H2O compound (1, pic = picolinate) in the presence of structure-directing guanidinium cations. Single-crystal X-ray diffraction studies demonstrate that 1 contains dimeric {PW11O39Cu(H2O)}2{Cu(pic)2} molecular species constituted by two Keggin-type anions linked by one {Cu(pic)2} octahedral complex through axial coordination to their terminal oxygen atoms. The extensive hydrogen-bonding network established by guanidium cations and Keggin clusters plays a key role in retaining the crystallinity of the system throughout dehydration to allow a single-crystal-to-single-crystal (SCSC) transformation into the anhydrous [C(NH2)3]10[{PW11O39Cu}2{Cu(pic)2}] (2a) at 170 °C. Structural modifications involve the re-orientation, shifting in ca. 1.5 Å and condensation of all the {PW11O39Cu} units to result in {PW11O39Cu}n chains in an unprecedented solid-state polymerisation. This phase transition also implies the cleavage of Cu-O bonds induced by the rotation and translation of Keggin-type anions, in such a way that hybrid dimeric units in 1 are dismantled and {Cu(pic)2} complexes become square planar. The irreversibility of the phase transition has been confirmed by combined thermal and diffractometric analyses, which evidence that the anhydrous phase adsorbs only one water molecule per cluster to become the [C(NH2)3]10[{PW11O39Cu}2{Cu(pic)2}]·2H2O (2h) hydrated derivative without any significant alteration in its cell parameters, nor in its crystalline structure. Phase transformations have been monitored by electron paramagnetic resonance spectroscopy.Publication Open Access Consecutive single-crystal-to-single-crystal isomerization of novel octamolybdate anions within a microporous hybrid framework with robust water sorption properties(Wiley, 2023) Ruiz Bilbao, Estíbaliz; Iturrospe, Amaia; Reinoso, Santiago; Artetxe, Beñat; Beobide, Garikoitz; San Felices, Leire; Lezama, Luis; Gutiérrez Zorrilla, Juan M.; Darwish, Shaza; Sensharma, Debobroto; Zaworotko, Michael J.; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2The 3D hybrid framework [{Cu(cyclam)}3(kMo8O27)]· 14H2O (1) (cyclam=1,4,8,11-tetraazacyclotetradecane) undergoes sequential single-crystal-to-singlecrystal transformations upon heating to afford two different anhydrous phases (2 a and 3a). These transitions modify the framework dimensionality and enable the isomerization of k-octamolybdate (k-Mo8) anions into λ (2 a) and μ (3 a) forms through metal migration. Hydration of 3 a involves condensation of one water molecule to the cluster to afford the γ-Mo8 isomer in 4, which dehydrates back into 3a through the 6a intermediate. In contrast, 2a reversibly hydrates to form 5, exhibiting the same Mo8 cluster as that of 1. It is remarkable that three of the Mo8 clusters (k, λ and μ) are new and that up to three different microporous phases can be isolated from 1 (2 a, 3a, and 6a). Water vapor sorption analyses show high recyclability and the highest uptake values for POM-based systems. The isotherms display an abrupt step at low humidity level desirable for humidity control devices or water harvesting in drylands.Publication Open Access Monokristal-monokristal eraldaketak polioxometalatoetan oinarritutako sistemetan: termikoki aktibatutako zenbait adibide(Universidad del País Vasco, 2019) Fernández Navarro, Leticia; Ruiz Bilbao, Estíbaliz; Artetxe, Beñat; San Felices, Leire; Iturrospe, Amaia; Reinoso, Santiago; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaKanpo-estimuluen bitartez aktibatutako fase-trantsizioak, eta haien artean kristal bakun izaera mantentzen duten kasuak, hots monokristal-monokristal (MKMK) eraldaketak, interes handikoak dira; izan ere, gai dira i) ezaugarri berriak dituzten produktuak emateko eta ii) materialaren propietateetan gertatzen diren aldaketak, egitura kristalinoak jasaten dituenekin erlazionatzeko. Polioxometalatoen (POMen) kasuan bezala, egiturei zurruntasuna ematen dieten oinarrizko unitateak erabiltzea bide egokia da prozesuan zehar gerta litekeen kristalinitatearen galera saihesteko. Gaur egun POMetan oinarritutako sistemetan aurki daitezkeen MKMK eraldaketa urrien artean, aipatzekoak dira termikoki aktibatutako adibideak. Lan honetan azken hauek laburbilduko dira eta bereziki gure ikerketa taldean prestatutako konposatuak eta haien erabilerak (katalisia eta gasen xurgapen selektiboa) goraipatuko ditugu.Publication Open Access The effect of the orientation of the Jahn-Teller distortion on the magnetic interactions of trinuclear mixed-valence Mn(II)/Mn(III) complexes(Royal Society of Chemistry, 2019) Bikas, Rahman; Shahmoradi, Elaheh; Reinoso, Santiago; Emami, Marzieh; Lezama, Luis; Sanchiz, Joaquín; Noshiranzadeh, Nader; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaTwo new trinuclear manganese complexes, [Mn3(L1)(μ-OCH3)2(N3)2]·CH3OH (1) and [Mn3(L2)(μ-OCH3)2(N3)2]·CH3OH (2), have been obtained from the reaction of Mn(OAc)2 4H2O, NaN3 and the preformed N6O4-donor H4L1 or H4L2 compartmental ligands, which are synthesized via Schiff base condensation of pentaethylenehexamine with 2-hydroxybenzaldehyde or 2-hydroxy-3-methoxybenzaldehye, respectively. Complexes 1 and 2 have been characterized by spectroscopic methods and single-crystal X-ray analysis. The structural studies indicate that both 1 and 2 are mixed-valence complexes containing angular Mn(III)-Mn(II)-Mn(III) cores in which the metal centers are connected to each other by phenoxido and methoxido bridging groups. The coordination environment around the manganese ions is analogous in both complexes, but for a change in the direction of the Jahn-Teller distortion around the external Mn(III) ions when going from 1 to 2, which is mainly attributed to the steric effect of different substituents on the phenyl rings of the ligands. The analysis of the magnetic susceptibility data indicates the presence of antiferromagnetic intramolecular coupling in both complexes, but the interaction in 1 was found to be nearly one order of magnitude weaker than that in 2. This fact is rationalized on the basis of the different orientation of the Jahn-Teller distortion, which modifies the magnetic exchange pathway through the phenoxido bridges from the equatorial-axial connection type observed in 1 to the axial-axial linkages displayed by 2.Publication Open Access Thermally induced structural transitions between single-crystalline states in the first hybrid compound combining Keggin-type clusters with metal-cyclam complexes: from two-dimensional covalent assemblies to discrete molecular species(American Chemical Society, 2020) Fernández Navarro, Leticia; Iturrospe, Amaia; Reinoso, Santiago; Artetxe, Beñat; Ruiz Bilbao, Estíbaliz; San Felices, Leire; Gutiérrez Zorrilla, Juan M.; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasA hydrothermal reaction between the monolacunary polyoxometalate [SiW11O39]8-, a copper(II) salt, and 1,4,8,11-tetraazacyclotetradecane (cyclam) affords the first example of a hybrid compound combining metal complexes of such an N4-tetradentate macrocyclic ligand and Keggin-type clusters, namely, [Cu(cyclam)(H2O)][{Cu(cyclam)}2SiW11O39Cu(H2O)]·5H2O (1). This compound has been characterized by infrared spectroscopy and thermal and elemental analyses. Single-crystal X-ray diffraction (scXRD) reveals a layered crystal packing made of corrugated two-dimensional covalent grids in which four octahedral {Cu(cyclam)}2+ bridging moieties connect copper(II)-monosubstituted {SiW11O39Cu(H2O)}6- polyanions to four adjacent clusters, and additional [Cu(cyclam)(H2O)]2+ square-pyramidal counterions are embedded into square-like grid voids. Thermostructural analyses confirm the presence in the 130-250 °C temperature range of a stable and crystalline anhydrous phase, which displays a diffraction pattern different from that of 1. This thermally triggered phase transition proceeds through a single-crystal to single-crystal transformation pathway, which according to scXRD, involves not only the release of water molecules, but also the cleavage and formation of Cu-O bonds induced by the rotation of Keggin-type anions. These modifications fully dismantle the parent two-dimensional covalent assembly to result in the neutral, discrete [{Cu(cyclam)}3SiW11O39Cu] hybrid species (2), in which the cluster exhibits three square-pyramidal {Cu(cyclam)}2+ decorating moieties grafted at its surface. This species must display a five-coordinated copper(II) center in the Keggin skeleton, and therefore, it constitutes one of the scarce examples of such type of coordinatively unsaturated substituted cluster observed in the solid state. The irreversibility of the phase transition has been confirmed by combined thermal and diffractometric analyses, which evidenced also the great flexibility of the supramolecular framework of 2, as this anhydrous phase is able to adsorb up to six water molecules per cluster to lead to the hydrated derivative [{Cu(cyclam)}3SiW11O39Cu(H2O)]·5H2O (2h) without any significant alteration in its cell parameters, nor in its crystalline structure.Publication Open Access Determination of hazardous vapors from the thermal decomposition of organochlorinated silica xerogels with adsorptive properties(Elsevier, 2024) Rosales Reina, María Beatriz; Cruz Quesada, Guillermo; Pujol, Pablo; Reinoso, Santiago; Elosúa Aguado, César; Arzamendi Manterola, Gurutze; López Ramón, María Victoria; Garrido Segovia, Julián José; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCThe incorporation of organic groups into sol-gel silica materials is known to have a noticeable impact on the properties and structure of the resulting xerogels due to the combination of the properties inherent to the organic fragments (functionality and flexibility) with the mechanical and structural stability of the inorganic matrix. However, the reduction of the inorganic content in the materials could be detrimental to their thermal stability properties, limiting the range of their potential applications. Therefore, this work aims to evaluate the thermal stability of hybrid inorganic-organic silica xerogels prepared from mixtures of tetraethoxysilane and organochlorinated triethoxysilane precursors. To this end, a series of four materials with a molar percentage of organochlorinated precursor fixed at 10%, but differing in the type of organic group (chloroalkyls varying in the alkyl-chain length and chlorophenyl), has been selected as model case study. The gases and vapors released during the thermal decomposition of the samples under N2 atmosphere have been analyzed and their components determined and quantified using a thermogravimetric analyzer coupled to a Fourier-transform infrared spectrophotometer and to a gas chromatography-mass spectrometry unit. These analyses have allowed to identify up to three different thermal events for the pyrolysis of the organochlorinated xerogel materials and to elucidate the reaction pathways associated with such processes. These mechanisms have been found to be strongly dependent on the specific nature of the organic group.Publication Open Access Polyoxometalates in catalysis(Jenny Stanford Publishing, 2022) Alcañiz Monge, Juan; Reinoso, Santiago; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2This chapter will focus on providing a basis for understanding the mechanisms involved in the catalysis carried out by selected polyoxometalate (POM)-based compounds. The catalysts discussed herein will be either insoluble POM salts or POM clusters heterogenized on porous solid supports, including activated carbon materials and metallic oxides such as zirconia. The influence on the catalytic activity of both the POM catalytic species and the active porous support will be the main aspects to be commented and analyzed in detail within the chapter.Publication Open Access Gold nanoparticles capped with a novel titanium(iv)-containing polyoxomolybdate cluster: selective and enhanced bactericidal effect against Escherichia coli(Wiley, 2024) Paesa, Mónica; Almazán, Fernando; Yus Argón, Cristina; Sebastián, Víctor; Arruebo Gordo, Manuel; Reinoso, Santiago; Pellejero, Ismael; Gandía Pascual, Luis; Mendoza, Gracia; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaBacterial infections are a public health threat of increasing concern in medical care systems; hence, the search for novel strategies to lower the use of antibiotics and their harmful effects becomes imperative. Herein, the antimicrobial performance of four polyoxometalate (POM)-stabilized gold nanoparticles (Au@POM) against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as Gram-negative and Gram-positive bacteria models, respectively, is studied. The bactericidal studies performed, both in planktonic and sessile forms, evidence the antimicrobial potential of these hybrid nanostructures with selectivity toward Gram-negative species. In particular, the Au@GeMoTi composite with the novel [Ti2(HGeMo7O28)2]10¿ POM capping ligand exhibits outstanding bactericidal efficiency with a minimum inhibitory concentration of just 3.12 µm for the E. coli strain, thus outperforming the other three Au@POM counterparts. GeMoTi represents the fourth example of a water-soluble TiIV-containing polyoxomolybdate, and among them, the first sandwich-type structure having heteroatoms in high-oxidation state. The evaluation of the bactericidal mechanisms of action points to the cell membrane hyperpolarization, disruption, and subsequent nucleotide leakage and the low cytotoxicity exerted on five different cell lines at antimicrobial doses demonstrates the antibiotic-like character. These studies highlight the successful design and development of a new POM-based nanomaterial able to eradicate Gram-negative bacteria without damaging mammalian cells.