Olariaga Jauregui, Eduardo
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Olariaga Jauregui
First Name
Eduardo
person.page.departamento
Automática y Computación
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Liquid crystals in reconfigurable reflectarray antennas for sub-millimeter waves(IEEE, 2024-08-21) Pérez Quintana, Dayan; Aguirre Gallego, Erik; Olariaga Jauregui, Eduardo; Kuznetsov, Sergei A.; Lapanik, Valeri I.; Sutormin, Vitaly S.; Zyryanov, Victor Ya; Marcotegui Iturmendi, José Antonio; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCAccelerated technological progress responds to the dynamic evolution of wireless communication systems, fueled by the advent of 5G, the emergence of 6G, and the pervasive integration of the IoT paradigm. Smart antennas play a pivotal role in this advancement, facilitating electronic beam steering to meet escalating demands for enhanced bandwidth and elevated operating frequencies. The spotlight shifts to reconfigurable reflectarray antennas, gaining prominence over conventional phased arrays. Notably, liquid crystals (LCs) emerge as a promising avenue for creating electronically reconfigurable/switchable reflectarrays, specifically tailored for short millimeter and terahertz waves. LCs, as a unique aggregate state combining solid and liquid features, address current technology limitations. Their uniaxial nature and the ability to manipulate molecule orientation enable effective fine-tuning of dielectric permittivity without drawbacks present in existing technologies.Publication Open Access Design, assessment and deployment of an efficient golf game dynamics management system based on flexible wireless technologies(MDPI, 2023) Picallo Guembe, Imanol; Aguirre Gallego, Erik; López Iturri, Peio; Guembe Zabaleta, Javier; Olariaga Jauregui, Eduardo; Klaina, Hicham; Marcotegui Iturmendi, José Antonio; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe practice of sports has been steadily evolving, taking advantage of different technological tools to improve different aspects such as individual/collective training, support in match development or enhancement of audience experience. In this work, an in-house implemented monitoring system for golf training and competition is developed, composed of a set of distributed end devices, gateways and routers, connected to a web-based platform for data analysis, extraction and visualization. Extensive wireless channel analysis has been performed, by means of deterministic 3D radio channel estimations and radio frequency measurements, to provide coverage/capacity estimations for the specific use case of golf courses. The monitoring system has been fully designed considering communication as well as energy constraints, including wireless power transfer (WPT) capabilities in order to provide flexible node deployment. System validation has been performed in a real golf course, validating end-to-end connectivity and information handling to improve overall user experience.Publication Open Access Reconfigurable millimeter-wave reflectarray based on low loss liquid crystals(IEEE, 2024) Pérez Quintana, Dayan; Aguirre Gallego, Erik; Olariaga Jauregui, Eduardo; Kuznetsov, Sergei A.; Lapanik, Valeri I.; Sutormin, Vitaly S.; Zyryanov, Victor Ya; Marcotegui Iturmendi, José Antonio; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCThis article reports on the development and evaluation of a reconfigurable millimeter-wave reflectarray (RA) based on liquid-crystal (LC) substrate operating in the D-band (105–125 GHz). The RA is composed of a high-impedance surface (HIS) with a meta-array of 33 × 29 patches on a 2-mm-thick quartz substrate, separated from the ground plane (GP) by a 40-µm-thick LC layer. A novel LC composition with low dielectric losses (<0.003) and high dielectric anisotropy (>1.3) has been developed for operation at millimeter waves. The results demonstrate a reflection phase tunability of 210◦ and low insertion losses of 2.5 dB. Furthermore, the device was demonstrated as a proof of concept for 1-D beam-steering applications, exhibiting an operational bandwidth of 12 GHz.