Recarte Callado, Vicente

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Recarte Callado

First Name

Vicente

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    Long-range atomic order and entropy change at the martensitic transformation in a Ni-Mn-In-Co metamagnetic shape memory alloy
    (MDPI, 2014) Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Pérez de Landazábal Berganzo, José Ignacio; Cesari, Eduard; Rodríguez Velamazán, José Alberto; Física; Fisika
    The influence of the atomic order on the martensitic transformation entropy change has been studied in a Ni-Mn-In-Co metamagnetic shape memory alloy through the evolution of the transformation temperatures under high-temperature quenching and post-quench annealing thermal treatments. It is confirmed that the entropy change evolves as a consequence of the variations on the degree of L21 atomic order brought by thermal treatments, though, contrary to what occurs in ternary Ni-Mn-In, post-quench aging appears to be the most effective way to modify the transformation entropy in Ni-Mn-In-Co. It is also shown that any entropy change value between around 40 and 5 J/kgK can be achieved in a controllable way for a single alloy under the appropriate aging treatment, thus bringing out the possibility of properly tune the magnetocaloric effect.
  • PublicationOpen Access
    Giant direct and inverse magnetocaloric effect linked to the same forward martensitic transformation
    (Springer Nature, 2017) Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Sánchez-Alarcos Gómez, Vicente; Beato López, Juan Jesús; Rodríguez Velamazán, José Alberto; Sánchez Marcos, J.; Gómez Polo, Cristina; Cesari, Eduard; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; Física
    Metamagnetic shape memory alloys have aroused considerable attraction as potential magnetic refrigerants due to the large inverse magnetocaloric effect associated to the magnetic-field-induction of a reverse martensitic transformation (martensite to austenite). In some of these alloys, the austenite phase can be retained on cooling under high magnetic fields, being the retained phase metastable after field removing. Here, we report a giant direct magnetocaloric effect linked to the anomalous forward martensitic transformation (austenite to martensite) that the retained austenite undergoes on heating. Under moderate fields of 10 kOe, an estimated adiabatic temperature change of 9 K has been obtained, which is (in absolute value) almost twice that obtained in the conventional transformation under higher applied fields. The observation of a different sign on the temperature change associated to the same austenite to martensite transformation depending on whether it occurs on heating (retained) or on cooling is attributed to the predominance of the magnetic or the vibrational entropy terms, respectively.
  • PublicationOpen Access
    Routes for enhanced magnetism in Ni-Mn-In metamagnetic shape memory alloys
    (Elsevier, 2019) López García, Javier; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Pérez de Landazábal Berganzo, José Ignacio; Fabelo, O.; Cesari, Eduard; Rodríguez Velamazán, José Alberto; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    The authors provide in-depth physical insight into the enhancement of the magnetic properties of metamagnetic shape memory alloys produced by thermal treatment and cobalt doping. They use neutron scattering to study the atomic order and magnetic structures in the austenitic phases of Ni50Mn34In16 and Ni45Co5Mn37In13 alloys in two different states induced by thermal treatments. The increase of the magnetization in the austenite phase, particularly by cobalt doping, is explained by the enhanced ferromagnetic coupling between the magnetic moments located in octahedral sites. The spin density maps obtained from polarized neutron diffraction reveal the magnetic interaction pathways responsible for this coupling scheme.
  • PublicationOpen Access
    Magnetocaloric effect enhancement driven by intrinsic defects in a Ni45Co5Mn35Sn15 alloy
    (Elsevier, 2019) Sánchez-Alarcos Gómez, Vicente; López García, Javier; Unzueta, Iraultza; Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Beato López, Juan Jesús; García, José Ángel; Plazaola, Fernando; Rodríguez Velamazán, José Alberto; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; Física
    The influence of mechanically-induced defects on the magnetostructural properties is analyzed in a Ni-Co-Mn-Sn alloy subjected to soft milling and subsequent annealing treatments. It is found that, opposite to what occurs in Ni-Mn-Sn ternary alloys, the annealing treatment affects the magnetic properties in a different way in martensite and in austenite. In particular, the saturation magnetization significantly increases in martensite after annealing whereas just a very slight variation is observed in austenite. This leads to the interesting fact that the presence of microstructural defects, far for worsening, makes the magnetocaloric effect to be higher in the as-milled state than after annealing. This behavior is explained as the result of the combination of the effect of defects on the Mn-Mn distance, the effect of Co on the magnetic exchange coupling between Mn atoms, and the effect of defects on the vibrational entropy change at the martensitic transformation.
  • PublicationOpen Access
    Tailoring the structural and magnetic properties of Co-Zn nanosized ferrites for hyperthermia applications
    (Elsevier, 2018) Gómez Polo, Cristina; Recarte Callado, Vicente; Cervera Gabalda, Laura María; Beato López, Juan Jesús; López García, Javier; Rodríguez Velamazán, José Alberto; Ugarte Martínez, María Dolores; Mendonça, E. C.; Duque, J. G. S.; Zientziak; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Estadística, Informática y Matemáticas; Gobierno de Navarra / Nafarroako Gobernua
    A comparative study of the magnetic properties (magnetic moment, magnetocrystalline anisotropy) and hyperthermia response in Co-Zn spinel nanoparticles is presented. The CoxZn1-xFe2O4 nanoparticles (x = 1, 0.5, 0.4, 0.3, 0.2 and 0.1) were synthesized by co-precipitated method and the morphology and mean crystallite size (around 10 nm) of the nanoparticles were analysed by TEM Microscopy. Regarding the magnetic characterization (SQUID magnetometry), Co-Zn nanoparticles display at room temperature anhysteretic magnetization curves, characteristic of the superparamagnetic behavior. A decrease in the blocking temperature, T-B, with Zn content is experimentally detected that can be ascribed to the reduction in the mean nanoparticle size as x decreases. Furthermore, the reduction in the magnetocrystalline anisotropy with Zn inclusion is confirmed through the analysis of TB versus the mean volume of the nanoparticles and the law of approach to saturation. Maximum magnetization is achieved for x = 0.5 as a result of the cation distribution between octahedral and tetrahedral spinel sites, analysed by neutron diffraction studies. The occurrence of a canted spin arrangement (Yafet-Kittel angle) is introduced to properly fit the magnetic spinel structures. Finally, the heating capacity of these spinel ferrites is analyzed under ac magnetic field (magnetic hyperthermia). Maximum SAR (Specific Absorption Rate) values are achieved for x = 0.5 that should be correlated to the maximum magnetic moment of this composition.