Recarte Callado, Vicente

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Recarte Callado

First Name

Vicente

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Room temperature huge magnetocaloric properties in low hysteresis ordered Cu-doped Ni-Mn-In-Co alloys
    (Elsevier, 2022) La Roca, Paulo Matías; López García, Javier; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Rodríguez Velamazán, José Alberto; Pérez de Landazábal Berganzo, José Ignacio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako Gobernua, PC017–018 AMELEC
    The reduction of the thermal hysteresis in first order magnetostructural transition is a determining factor to decrease energy losses and to improve the efficiency of magnetocaloric cooling based systems. In this work, a Cu doped NiMnInCo metamagnetic shape memory alloy (MMSMA) exhibiting a narrow thermal hysteresis (around 5 K) at room temperature has been designed. In this alloy, the induced L21 ordering process affects the phase stability in an unusual way compared to that observed in NiMnInCo and other NiMn based alloys. This ordering produces an increase in the Curie temperature of the austenite but hardly affects the mar tensitic transformation temperatures. As a consequence, the ordering increases the magnetization of the austenite without changing the transformation temperatures, doubles the sensitivity of the transformation to magnetic fields (the Claussius-Clapeyron slope goes from 2.1 to 3.9 K/T), improves the magnetocaloric effect, the reversibility and finally, enhances the refrigeration capacity. In addition, the magnetic hysteresis losses are among the lowest reported in the literature and the effective cooling capacity coefficient RCeff reaches 86 J/Kg for 2 T (15 % higher than those found in Ni-Mn based alloys) and 314 J/Kg for 6 T fields. Therefore, the ordered alloy possesses an excellent combination of low thermal hysteresis and high RCeff, not achieved previously in metamagnetic shape memory alloys near room temperature.
  • PublicationOpen Access
    Magnetocaloric effect enhancement driven by intrinsic defects in a Ni45Co5Mn35Sn15 alloy
    (Elsevier, 2019) Sánchez-Alarcos Gómez, Vicente; López García, Javier; Unzueta, Iraultza; Pérez de Landazábal Berganzo, José Ignacio; Recarte Callado, Vicente; Beato López, Juan Jesús; García, José Ángel; Plazaola, Fernando; Rodríguez Velamazán, José Alberto; Fisika; Institute for Advanced Materials and Mathematics - INAMAT2; Física
    The influence of mechanically-induced defects on the magnetostructural properties is analyzed in a Ni-Co-Mn-Sn alloy subjected to soft milling and subsequent annealing treatments. It is found that, opposite to what occurs in Ni-Mn-Sn ternary alloys, the annealing treatment affects the magnetic properties in a different way in martensite and in austenite. In particular, the saturation magnetization significantly increases in martensite after annealing whereas just a very slight variation is observed in austenite. This leads to the interesting fact that the presence of microstructural defects, far for worsening, makes the magnetocaloric effect to be higher in the as-milled state than after annealing. This behavior is explained as the result of the combination of the effect of defects on the Mn-Mn distance, the effect of Co on the magnetic exchange coupling between Mn atoms, and the effect of defects on the vibrational entropy change at the martensitic transformation.