Person: Ayala Lauroba, Christian
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Ayala Lauroba
First Name
Christian
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
0000-0002-5229-9636
person.page.upna
812816
Name
8 results
Search Results
Now showing 1 - 8 of 8
Publication Open Access Pushing the limits of Sentinel-2 for building footprint extraction(IEEE, 2022) Ayala Lauroba, Christian; Aranda, Carlos; Galar Idoate, Mikel; Institute of Smart Cities - ISCBuilding footprint maps are of high importance nowadays since a wide range of services relies on them to work. However, activities to keep these maps up-to-date are costly and time-consuming due to the great deal of human intervention required. Several automation attempts have been carried out in the last decade aiming at fully automatizing them. However, taking into account the complexity of the task and the current limitations of semantic segmentation deep learning models, the vast majority of approaches rely on aerial imagery (<1 m). As a result, prohibitive costs and high revisit times prevent the remote sensing community from maintaining up-to-date building maps. This work proposes a novel deep learning architecture to accurately extract building footprints from high resolution satellite imagery (10 m). Accordingly, super-resolution and semantic segmentation techniques have been fused to make it possible not only to improve the building's boundary definition but also to detect buildings with sub-pixel width. As a result, fine-grained building maps at 2.5 m are generated using Sentinel-2 imagery, closing the gap between satellite and aerial semantic segmentation.Publication Open Access A deep learning approach to an enhanced building footprint and road detection in high-resolution satellite imagery(MDPI, 2021) Ayala Lauroba, Christian; Sesma Redín, Rubén; Aranda, Carlos; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaThe detection of building footprints and road networks has many useful applications including the monitoring of urban development, real-time navigation, etc. Taking into account that a great deal of human attention is required by these remote sensing tasks, a lot of effort has been made to automate them. However, the vast majority of the approaches rely on very high-resolution satellite imagery (<2.5 m) whose costs are not yet affordable for maintaining up-to-date maps. Working with the limited spatial resolution provided by high-resolution satellite imagery such as Sentinel-1 and Sentinel-2 (10 m) makes it hard to detect buildings and roads, since these labels may coexist within the same pixel. This paper focuses on this problem and presents a novel methodology capable of detecting building and roads with sub-pixel width by increasing the resolution of the output masks. This methodology consists of fusing Sentinel-1 and Sentinel-2 data (at 10 m) together with OpenStreetMap to train deep learning models for building and road detection at 2.5 m. This becomes possible thanks to the usage of OpenStreetMap vector data, which can be rasterized to any desired resolution. Accordingly, a few simple yet effective modifications of the U-Net architecture are proposed to not only semantically segment the input image, but also to learn how to enhance the resolution of the output masks. As a result, generated mappings quadruplicate the input spatial resolution, closing the gap between satellite and aerial imagery for building and road detection. To properly evaluate the generalization capabilities of the proposed methodology, a data-set composed of 44 cities across the Spanish territory have been considered and divided into training and testing cities. Both quantitative and qualitative results show that high-resolution satellite imagery can be used for sub-pixel width building and road detection following the proper methodology.Publication Open Access Towards fine-grained road maps extraction using sentinel-2 imagery(Copernicus, 2021) Ayala Lauroba, Christian; Aranda, Carlos; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaNowadays, it is highly important to keep road maps up-to-date since a great deal of services rely on them. However, to date, these labours have demanded a great deal of human attention due to their complexity. In the last decade, promising attempts have been carried out to fully-automatize the extraction of road networks from remote sensing imagery. Nevertheless, the vast majority of methods rely on aerial imagery (< 1 m), whose costs are not yet affordable for maintaining up-to-date maps. This work proves that it is also possible to accurately detect roads using high resolution satellite imagery (10 m). Accordingly, we have relied on Sentinel-2 imagery considering its freely availability and the higher revisit times compared to aerial imagery. It must be taken into account that the lack of spatial resolution of this sensor drastically increases the difficulty of the road detection task, since the feasibility to detect a road depends on its width, which can reach sub-pixel size in Sentinel-2 imagery. For that purpose, a new deep learning architecture which combines semantic segmentation and super-resolution techniques is proposed. As a result, fine-grained road maps at 2.5 m are generated from Sentinel-2 imagery.Publication Open Access Super-resolution for Sentinel-2 images(International Society for Photogrammetry and Remote Sensing, 2019) Galar Idoate, Mikel; Sesma Redín, Rubén; Ayala Lauroba, Christian; Aranda, Carlos; Institute of Smart Cities - ISCObtaining Sentinel-2 imagery of higher spatial resolution than the native bands while ensuring that output imagery preserves the original radiometry has become a key issue since the deployment of Sentinel-2 satellites. Several studies have been carried out on the upsampling of 20m and 60m Sentinel-2 bands to 10 meters resolution taking advantage of 10m bands. However, how to super-resolve 10m bands to higher resolutions is still an open problem. Recently, deep learning-based techniques has become a de facto standard for single-image super-resolution. The problem is that neural network learning for super-resolution requires image pairs at both the original resolution (10m in Sentinel-2) and the target resolution (e.g., 5m or 2.5m). Since there is no way to obtain higher resolution images for Sentinel-2, we propose to consider images from others sensors having the greatest similarity in terms of spectral bands, which will be appropriately pre-processed. These images, together with Sentinel-2 images, will form our training set. We carry out several experiments using state-of-the-art Convolutional Neural Networks for single-image super-resolution showing that this methodology is a first step toward greater spatial resolution of Sentinel-2 images.Publication Open Access Super-resolution of Sentinel-2 images using convolutional neural networks and real ground truth data(MDPI, 2020) Galar Idoate, Mikel; Sesma Redín, Rubén; Ayala Lauroba, Christian; Albizua, Lourdes; Aranda, Carlos; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako Gobernua, 0011-1408-2020-000008.Earth observation data is becoming more accessible and affordable thanks to the Copernicus programme and its Sentinel missions. Every location worldwide can be freely monitored approximately every 5 days using the multi-spectral images provided by Sentinel-2. The spatial resolution of these images for RGBN (RGB + Near-infrared) bands is 10 m, which is more than enough for many tasks but falls short for many others. For this reason, if their spatial resolution could be enhanced without additional costs, any posterior analyses based on these images would be benefited. Previous works have mainly focused on increasing the resolution of lower resolution bands of Sentinel-2 (20 m and 60 m) to 10 m resolution. In these cases, super-resolution is supported by bands captured at finer resolutions (RGBN at 10 m). On the contrary, this paper focuses on the problem of increasing the spatial resolution of 10 m bands to either 5 m or 2.5 m resolutions, without having additional information available. This problem is known as single-image super-resolution. For standard images, deep learning techniques have become the de facto standard to learn the mapping from lower to higher resolution images due to their learning capacity. However, super-resolution models learned for standard images do not work well with satellite images and hence, a specific model for this problem needs to be learned. The main challenge that this paper aims to solve is how to train a super-resolution model for Sentinel-2 images when no ground truth exists (Sentinel-2 images at 5 m or 2.5 m). Our proposal consists of using a reference satellite with a high similarity in terms of spectral bands with respect to Sentinel-2, but with higher spatial resolution, to create image pairs at both the source and target resolutions. This way, we can train a state-of-the-art Convolutional Neural Network to recover details not present in the original RGBN bands. An exhaustive experimental study is carried out to validate our proposal, including a comparison with the most extended strategy for super-resolving Sentinel-2, which consists in learning a model to super-resolve from an under-sampled version at either 40 m or 20 m to the original 10 m resolution and then, applying this model to super-resolve from 10 m to 5 m or 2.5 m. Finally, we will also show that the spectral radiometry of the native bands is maintained when super-resolving images, in such a way that they can be used for any subsequent processing as if they were images acquired by Sentinel-2.Publication Open Access Multi-temporal data augmentation for high frequency satellite imagery: a case study in Sentinel-1 and Sentinel-2 building and road segmentation(ISPRS, 2022) Ayala Lauroba, Christian; Aranda Magallón, Coral; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCSemantic segmentation of remote sensing images has many practical applications such as urban planning or disaster assessment. Deep learning-based approaches have shown their usefulness in automatically segmenting large remote sensing images, helping to automatize these tasks. However, deep learning models require large amounts of labeled data to generalize well to unseen scenarios. The generation of global-scale remote sensing datasets with high intraclass variability presents a major challenge. For this reason, data augmentation techniques have been widely applied to artificially increase the size of the datasets. Among them, photometric data augmentation techniques such as random brightness, contrast, saturation, and hue have been traditionally applied aiming at improving the generalization against color spectrum variations, but they can have a negative effect on the model due to their synthetic nature. To solve this issue, sensors with high revisit times such as Sentinel-1 and Sentinel-2 can be exploited to realistically augment the dataset. Accordingly, this paper sets out a novel realistic multi-temporal color data augmentation technique. The proposed methodology has been evaluated in the building and road semantic segmentation tasks, considering a dataset composed of 38 Spanish cities. As a result, the experimental study shows the usefulness of the proposed multi-temporal data augmentation technique, which can be further improved with traditional photometric transformations.Publication Open Access Multi-class strategies for joint building footprint and road detection in remote sensing(MDPI, 2021) Ayala Lauroba, Christian; Aranda, Carlos; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako Gobernua, 0011-1408-2020-000008Building footprints and road networks are important inputs for a great deal of services. For instance, building maps are useful for urban planning, whereas road maps are essential for disaster response services. Traditionally, building and road maps are manually generated by remote sensing experts or land surveying, occasionally assisted by semi-automatic tools. In the last decade, deep learning-based approaches have demonstrated their capabilities to extract these elements automatically and accurately from remote sensing imagery. The building footprint and road network detection problem can be considered a multi-class semantic segmentation task, that is, a single model performs a pixel-wise classification on multiple classes, optimizing the overall performance. However, depending on the spatial resolution of the imagery used, both classes may coexist within the same pixel, drastically reducing their separability. In this regard, binary decomposition techniques, which have been widely studied in the machine learning literature, are proved useful for addressing multiclass problems. Accordingly, the multi-class problem can be split into multiple binary semantic segmentation sub-problems, specializing different models for each class. Nevertheless, in these cases, an aggregation step is required to obtain the final output labels. Additionally, other novel approaches, such as multi-task learning, may come in handy to further increase the performance of the binary semantic segmentation models. Since there is no certainty as to which strategy should be carried out to accurately tackle a multi-class remote sensing semantic segmentation problem, this paper performs an in-depth study to shed light on the issue. For this purpose, open-access Sentinel-1 and Sentinel-2 imagery (at 10 m) are considered for extracting buildings and roads, making use of the well-known U-Net convolutional neural network. It is worth stressing that building and road classes may coexist within the same pixel when working at such a low spatial resolution, setting a challenging problem scheme. Accordingly, a robust experimental study is developed to assess the benefits of the decomposition strategies and their combination with a multi-task learning scheme. The obtained results demonstrate that decomposing the considered multi-class remote sensing semantic segmentation problem into multiple binary ones using a One-vs-All binary decomposition technique leads to better results than the standard direct multi-class approach. Additionally, the benefits of using a multi-task learning scheme for pushing the performance of binary segmentation models are also shown.Publication Open Access Learning super-resolution for Sentinel-2 images with real ground truth data from a reference satellite(Copernicus, 2020) Galar Idoate, Mikel; Sesma Redín, Rubén; Ayala Lauroba, Christian; Albizua, Lourdes; Aranda, Carlos; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaCopernicus program via its Sentinel missions is making earth observation more accessible and affordable for everybody. Sentinel-2 images provide multi-spectral information every 5 days for each location. However, the maximum spatial resolution of its bands is 10m for RGB and near-infrared bands. Increasing the spatial resolution of Sentinel-2 images without additional costs, would make any posterior analysis more accurate. Most approaches on super-resolution for Sentinel-2 have focused on obtaining 10m resolution images for those at lower resolutions (20m and 60m), taking advantage of the information provided by bands of finer resolutions (10m). Otherwise, our focus is on increasing the resolution of the 10m bands, that is, super-resolving 10m bands to 2.5m resolution, where no additional information is available. This problem is known as single-image super-resolution and deep learning-based approaches have become the state-of-the-art for this problem on standard images. Obviously, models learned for standard images do not translate well to satellite images. Hence, the problem is how to train a deep learning model for super-resolving Sentinel-2 images when no ground truth exist (Sentinel-2 images at 2.5m). We propose a methodology for learning Convolutional Neural Networks for Sentinel-2 image super-resolution making use of images from other sensors having a high similarity with Sentinel-2 in terms of spectral bands, but greater spatial resolution. Our proposal is tested with a state-of-the-art neural network showing that it can be useful for learning to increase the spatial resolution of RGB and near-infrared bands of Sentinel-2.