San Emeterio Garciandía, Leticia

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

San Emeterio Garciandía

First Name

Leticia

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 18
  • PublicationOpen Access
    Decoupling of traditional burnings and grazing regimes alters plant diversity and dominant species competition in high-mountain grasslands
    (Elsevier, 2021) Múgica Azpilicueta, Leire; Canals Tresserras, Rosa María; San Emeterio Garciandía, Leticia; Peralta de Andrés, Francisco Javier; Agronomia, Bioteknologia eta Elikadura; Zientziak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Agronomía, Biotecnología y Alimentación; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Over millennia, the combination of controlled burnings and extensive grazing has maintained mosaic landscapes and preserved mountain grasslands in southern Europe. In the last century, deep socio-economic changes have led to an abandonment of traditional uses, to a general decline of the domestic herbivory and to a misuse of burning practices. This study aims to quantify how the decoupling of burning and grazing regimes affects in the long-term the structure, diversity and dynamics of high-mountain, shrub-encroached grasslands. In spring 2012, four treatments (burned-grazed, burned-ungrazed, unburned-grazed and unburned-ungrazed) were set up at three sites in the Special Area of Conservation Roncesvalles-Selva de Irati, in southwest Pyrenees. During seven years, we monitored floristic composition and the height of the native tall-grass Brachypodium rupestre in four plots at each site. In the burned plots, we surveyed the resprout of the dominant shrub Ulex gallii and the dynamics of recovering of the herbaceous vegetation. Plant communities evolved differently in grazed and ungrazed plots. Extensive grazing, despite being lower than in previous decades, maintained plant diversity and limited shrub encroachment. The total absence of grazing fostered the encroachment of U. gallii at two sites and the expansion of B. rupestre at the other site. When B. rupestre cover was >60%, the encroachment of U. gallii was reduced. This research highlights the competition that occurs between shrubs and tall-grasses in the absence of grazing, and the modulating effect exerted by the burnings and the site-specific features. Understanding local plant dynamics is the first step to design the most appropriate practices that help to preserve diversity at the landscape and the community level in high-mountain grasslands of south Europe.
  • PublicationOpen Access
    Interactions between biogeochemical and management factors explain soil organic carbon in Pyrenean grasslands
    (Copernicus, 2020) Rodríguez, Antonio; Canals Tresserras, Rosa María; Plaixats Boixadera, J.; Albanell, E.; Debouk, Haifa; Garcia-Pausas, Jordi; San Emeterio Garciandía, Leticia; Ribas, A.; Jiménez, Juan José; Sebastià, M.T.; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Agronomía, Biotecnología y Alimentación
    Grasslands are one of the major sinks of terrestrial soil organic carbon (SOC). Understanding how environmental and management factors drive SOC is challenging because they are scale-dependent, with large-scale drivers affecting SOC both directly and through drivers working at small scales. Here we addressed how regional, landscape and grazing management, soil properties and nutrients, and herbage quality factors affect 20 cm depth SOC stocks in mountain grasslands in the Pyrenees. Taking advantage of the high variety of environmental heterogeneity in the Pyrenees, we built a dataset (n = 128) that comprises a wide range of environmental and management conditions. This was used to understand the relationship between SOC stocks and their drivers considering multiple environments. We found that temperature seasonality (difference between mean summer temperature and mean annual temperature; TSIS) was the most important geophysical driver of SOC in our study, depending on topography and management. TSIS effects on SOC increased in exposed hillsides, slopy areas, and relatively intensively grazed grasslands. Increased TSIS probably favours plant biomass production, particularly at high altitudes, but landscape and grazing management factors regulate the accumulation of this biomass into SOC. Concerning biochemical SOC drivers, we found unexpected interactive effects between grazer type, soil nutrients and herbage quality. Soil N was a crucial SOC driver as expected but modulated by livestock species and neutral detergent fibre contenting plant biomass; herbage recalcitrance effects varied depending on grazer species. These results highlight the gaps in knowledge about SOC drivers in grasslands under different environmental and management conditions. They may also serve to generate testable hypotheses in later/future studies directed to climate change mitigation policies.
  • PublicationOpen Access
    Soil bacterial functional diversity mirrors the loss of plant diversity by the expansion of a native tall-grass in high mountain grasslands
    (Springer, 2019) Canals Tresserras, Rosa María; Múgica Azpilicueta, Leire; Durán Lázaro, María; San Emeterio Garciandía, Leticia; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Agronomía, Biotecnología y Alimentación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Background and Aims: In highland ecosystems, global change processes are intense and foster vegetation shifts that may have an impact on soil functioning. Soil bacterial communities may be particularly sensitive to these changing scenarios. The aim of this research is to determine whether the loss of floristic diversity caused by the unusual dominance of a native component -the perennial grass Brachypodium rupestre (L.) Beauv., which is expanding aggressively in natural grasslands of the Western Pyrenees-, parallels a decrease of the soil bacterial functional diversity and their potential for nutrient transformations. Methods: We conducted the study in eight grasslands exposed to different degrees of B. rupestre spreading. Soil community physiological profiles of the heterotrophic bacteria, enzymatic activities related to C, P and N cycles, C and N microbial biomasses, N components and soil physical and chemical properties were determined. Results: Soils below low-diversity grasslands had lower bacterial functional richness and diversity but greater urease activity, pH and nitrate than soils in diverse grasslands. Ammonium pools, C and N microbial biomasses and enzymatic activities related to C and P did not differ between grasslands. Conclusions: The expansion of B. rupestre and the decrease of plant diversity coincided with a significant decline of bacterial functional diversity and an alteration of the N cycle. Not only plant composition but the prevailing disturbance regime may account for the results. Results also suggest that B. rupestre may rely on its capability to use N efficiently rather than on a soil bacteria-mediated N availability.
  • PublicationOpen Access
    Soil C/N ratios cause opposing effects in forests compared to grasslands on decomposition rates and stabilization factors in southern European ecosystems
    (Elsevier, 2023) Blanco Vaca, Juan Antonio; Durán Lázaro, María; Luquin, Josu; San Emeterio Garciandía, Leticia; Yeste Yeste, Antonio; Canals Tresserras, Rosa María; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Soils store an important amount of carbon (C), mostly in the form of organic matter in different decomposing stages. Hence, understanding the factors that rule the rates at which decomposed organic matter is incorporated into the soil is paramount to better understand how C stocks will vary under changing atmospheric and land use conditions. We studied the interactions between vegetation cover, climate and soil factors using the Tea Bag Index in 16 different ecosystems (eight forests, eight grasslands) along two contrasting gradients in the Spanish province of Navarre (SW Europe). Such arrangement encompassed a range of four climate types, elevations from 80 to 1420 m.a.s.l., and precipitation (P) from 427 to 1881 mm year–1. After incubating tea bags during the spring of 2017, we identified strong interactions between vegetation cover type, soil C/N and precipitation affecting decomposition rates and stabilization factors. In both forests and grasslands, increasing precipitation increased decomposition rates (k) but also the litter stabilization factor (S). In forests, however, increasing the soil C/N ratio raised decomposition rates and the litter stabilization factor, while in grasslands higher C/N ratios caused the opposite effects. In addition, soil pH and N also affected decomposition rates positively, but for these factors no differences between ecosystem types were found. Our results demonstrate that soil C flows are altered by complex site-dependent and site-independent environmental factors, and that increased ecosystem lignification will significantly change C flows, likely increasing decomposition rates in the short term but also increasing the inhibiting factors that stabilize labile litter compounds.
  • PublicationOpen Access
    Land use change effects on carbon and nitrogen stocks in the Pyrenees during the last 150 years: a modelling approach
    (Elsevier, 2015) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Canals Tresserras, Rosa María; González de Andrés, Ester; San Emeterio Garciandía, Leticia; Imbert Rodríguez, Bosco; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    In the southern Pyrenees, human population and therefore land uses have changed from forests to pastures, then crops, and back to pastures and secondary forests during the last two centuries. To understand what such rapid land use changes have meant for carbon (C) and nitrogen (N) stocks, we used data from two forest sites in the western Pyrenees, combined with regional data on pastures and crop production (potato, cereal), to calibrate the ecosystem-level model FORECAST. Then, we simulated 150-year of land use for each site, emulating historical changes. Our estimates show that the conversion from forests into pastures and crops created C and N deficits (378-427 Mg C ha-1, 4.0-4.6 Mg N ha-1) from which these sites are still recovering. The main ecological process behind the creation of these deficits was the loss of the ecological legacy of soil organic matter (SOM) created by the forest, particularly during conversion to farming. Pastures were able to reverse, stop or at least slow down the loss of such legacy. In conclusion, our work shows the deep impact of historical land use in ecosystem attributes, both in magnitude of removed C and N stocks and in duration of such impact. Also, the usefulness of ecological modelling in absence of historical data to estimate such changes is showcased, providing a framework for potential C and N stocks to be reached by climate change mitigation measures such as forest restoration.
  • PublicationOpen Access
    Relating the spatial distribution of a tall-grass to fertility islands in a temperate mountain grassland
    (Elsevier, 2021) San Emeterio Garciandía, Leticia; Durán Lázaro, María; Múgica Azpilicueta, Leire; Jiménez, Juan José; Canals Tresserras, Rosa María; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Agronomía, Biotecnología y Alimentación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Plant-soil feedback mechanisms influence the abundance and rarity of plant species and can favour invasive processes, including those of native species. To explore these mechanisms, we analysed correlations between spatial distributions of plant biomass and soil properties in two neighbouring grasslands at different phases of expansion of the native Eurasian tall-grass Brachypodium rupestre (Host) Roem & Schult (B. rupestre cover: >75 and 25–50%). For this, we applied spatially explicit sampling, geostatistical analysis and structural equation models (SEM) to probe causal relationships among measured variables involved in nutrient accumulation. We hypothesized that if litter accumulates as a result of reduced grazing, ‘fertility islands’ (spots of high SOM and nutrient contents) will form under B. rupestre clumps because the increase in resource inputs from litter will trigger SOM build-up and promote microbial growth. Our results show that ‘fertility islands’ of P and amino acids occurred under the patchy clumps of B. rupestre in the less invaded grassland. In addition, the SEMs indicated that nutrient accumulation was partially due to mineralization of the SOM and modulated by the soil microbial biomass. However, there was no correlation between spatial patterns of B. rupestre biomass, SOM and microbial biomass. Moreover, the SEMs explained small amounts of variance in them (SOM r2 = 0.22 and microbial biomass r2 = 0.08), suggesting that factors other than B. rupestre biomass were responsible for the high fertility below the patches. Our spatially explicit approach demonstrated that litter inputs in dense temperate grassland communities can generate ‘fertility islands’ that may favour the stability and expansion of a tall-grass invader and suggest that herbivory may enhance or inhibit this phenomenon.
  • PublicationOpen Access
    Disruption of traditional grazing and fire regimes shape the fungal endophyte assemblages of the tall-grass Brachypodium rupestre
    (Frontiers Media, 2021) Durán Lázaro, María; San Emeterio Garciandía, Leticia; Múgica Azpilicueta, Leire; Zabalgogeazcoa, Iñigo; Vázquez de Aldana, Beatriz R.; Canals Tresserras, Rosa María; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Agronomía, Biotecnología y Alimentación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The plant microbiome is likely to play a key role in the resilience of communities to the global climate change. This research analyses the culturable fungal mycobiota of Brachypodium rupestre across a sharp gradient of disturbance caused by an intense, anthropogenic fire regime. This factor has dramatic consequences for the community composition and diversity of high-altitude grasslands in the Pyrenees. Plants were sampled at six sites, and the fungal assemblages of shoots, rhizomes, and roots were characterized by culture-dependent techniques. Compared to other co-occurring grasses, B. rupestre hosted a poorer mycobiome which consisted of many rare species and a few core species that differed between aerial and belowground tissues. Recurrent burnings did not affect the diversity of the endophyte assemblages, but the percentages of infection of two core species -Omnidemptus graminis and Lachnum sp. -increased significantly. The patterns observed might be explained by (1) the capacity to survive in belowground tissues during winter and rapidly spread to the shoots when the grass starts its spring growth (O. graminis), and (2) the location in belowground tissues and its resistance to stress (Lachnum sp.). Future work should address whether the enhanced taxa have a role in the expansive success of B. rupestre in these anthropized environments.
  • PublicationOpen Access
    A survey of culturable fungal endophytes from festuca rubra subsp. pruinosa, a grass from Marine Cliffs, reveals a core microbiome
    (Frontiers Media, 2019) Pereira, Eric; Vázquez de Aldana, Beatriz R.; San Emeterio Garciandía, Leticia; Zabalgogeazcoa, Iñigo; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    Festuca rubra subsp. pruinosa is a perennial grass that inhabits sea cliffs of the Atlantic coasts of Europe. In this unhospitable environment plants grow in rock crevices and are exposed to abiotic stress factors such as low nutrient availability, wind, and salinity. Festuca rubra subsp. pruinosa is a host of the fungal endophyte Epichloe festucae, which colonizes aerial organs, but its root mycobiota is unknown. The culturable endophytic mycobiota of FRP roots was surveyed in a set of 105 plants sampled at five populations in marine cliffs from the northern coast of Spain. In total, 135 different fungal taxa were identified, 17 of them occurred in more than 10% of plants and in two or more populations. Seven taxa belonging to Fusarium, Diaporthe, Helotiales, Drechslera, Slopeiomyces, and Penicillium appeared to be constituents of the core microbiome of Festuca rubra subsp. pruinosa roots because they occurred in more than 20% of the plants analyzed, and at three or more populations. Most fungal strains analyzed (71.8%) were halotolerant. The presence of Epichloe festucae in aboveground tissue was detected in 65.7% of the plants, but its presence did not seem to significantly affect the structure of the core or other root microbiota, when compared to that of plants free of this endophyte. When plants of the grass Lolium perenne were inoculated with fungal strains obtained from Festuca rubra subsp. pruinosa roots, a Diaporthe strain significantly promoted leaf biomass production under normal and saline (200 mM NaCI) watering regimes. These results suggest that the core mycobiome of Festuca rubra subsp. pruinosa could have a role in host plant adaptation, and might be useful for the improvement of agricultural grasses.
  • PublicationOpen Access
    Formando futuras investigadoras: introduciendo la ciencia ecológica y ambiental al mundo escolar
    (Asociación Española de Ecología Terrestre (AEET), 2019) Canals Tresserras, Rosa María; Durán Lázaro, María; Múgica Azpilicueta, Leire; San Emeterio Garciandía, Leticia; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Gobierno de Navarra / Nafarroako Gobernua
    A pesar de su relevancia social creciente, la ciencia ecológica y ambiental está pasando por momentos muy bajos en los programas educativos de secundaria y bachillerato en nuestro país. En muchos centros escolares, la oferta de esta materia es inexistente en bachillerato y los métodos didácticos utilizados fomentan poco la motivación y el aprendizaje del alumnado. En consecuencia, el escaso valor que está recibiendo esta ciencia en la educación reglada acaba afectando a las opciones elegidas por los estudiantes para sus estudios de grado superior y universitarios. Este artículo describe una experiencia educativa llevada a cabo por el grupo de investigación en Ecología y Medio Ambiente de la Universidad Pública de Navarra (UPNA) y financiada por el Departamento de Educación del Gobierno de Navarra con el fin de introducir el trabajo de una científica ambiental a 12 niñas de 4 centros escolares. Se buscaba despertar su interés por este campo científico, vehiculizar a través de ellas esta ciencia a sus compañeros de colegio, y finalmente profundizar con los docentes implicados en esta problemática educativa.
  • PublicationOpen Access
    Pyric herbivory decreases soil denitrification despite increased nitrate availability in a temperate grassland
    (Elsevier, 2024-07-04) Múgica Azpilicueta, Leire; Le Roux, Xavier; San Emeterio Garciandía, Leticia; Cantarel, Amélie; Durán Lázaro, María; Gervaix, Jonathan; Creuzé des Châtelliers, Charline; Canals Tresserras, Rosa María; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    Pyric herbivory, the combination of controlled burning and targeted grazing, is an effective strategy for restoring abandoned, shrub-encroached rangelands to open ecosystems. This practice may impact soil nitrogen pools by altering soil nitrification and denitrification rates, and may lead to an increase of nitrogen losses through nitrate leaching and N-gas emissions. This research, located in the south-western Pyrenees, investigated the effects of pyric herbivory on soil nitrification and denitrification potentials and mineral nitrogen content in a gorse-encroached temperate rangeland six months after the burning was implemented. The study included three treatments: high-severity burning plus grazing, low-severity burning plus grazing, and unburned and ungrazed areas (control). We measured soil nitrification and denitrification potentials (net and gross), the limitation of denitrifiers by nitrogen or organic carbon, and the abundance of nitrite- and nitrous oxide-reducing bacteria. Additional soil and vegetation data complemented these measurements. Results showed that pyric herbivory did not significantly affect nitrification potential, which was low and highly variable. However, it decreased gross denitrification potential and nitrous oxide reduction to dinitrogen in high-severely burned areas compared to the control. Denitrification rates directly correlated with microbial biomass nitrogen, soil organic carbon, soil water content and abundance of nirS-harbouring bacteria. Contrary to the expected, soil nitrate availability did not directly influence denitrification despite being highest in burned areas. Overall, the study suggests that pyric herbivory does not significantly affect mid-term nitrification rates in temperate open ecosystems, but may decrease denitrification rates in intensely burned areas. These findings highlight the importance of assessing the potential impacts of land management practices, such as pyric herbivory, on soil nutrient cycling and ecosystem functioning.