San Emeterio Garciandía, Leticia

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

San Emeterio Garciandía

First Name

Leticia

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Disruption of traditional grazing and fire regimes shape the fungal endophyte assemblages of the tall-grass Brachypodium rupestre
    (Frontiers Media, 2021) Durán Lázaro, María; San Emeterio Garciandía, Leticia; Múgica Azpilicueta, Leire; Zabalgogeazcoa, Iñigo; Vázquez de Aldana, Beatriz R.; Canals Tresserras, Rosa María; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Agronomía, Biotecnología y Alimentación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The plant microbiome is likely to play a key role in the resilience of communities to the global climate change. This research analyses the culturable fungal mycobiota of Brachypodium rupestre across a sharp gradient of disturbance caused by an intense, anthropogenic fire regime. This factor has dramatic consequences for the community composition and diversity of high-altitude grasslands in the Pyrenees. Plants were sampled at six sites, and the fungal assemblages of shoots, rhizomes, and roots were characterized by culture-dependent techniques. Compared to other co-occurring grasses, B. rupestre hosted a poorer mycobiome which consisted of many rare species and a few core species that differed between aerial and belowground tissues. Recurrent burnings did not affect the diversity of the endophyte assemblages, but the percentages of infection of two core species -Omnidemptus graminis and Lachnum sp. -increased significantly. The patterns observed might be explained by (1) the capacity to survive in belowground tissues during winter and rapidly spread to the shoots when the grass starts its spring growth (O. graminis), and (2) the location in belowground tissues and its resistance to stress (Lachnum sp.). Future work should address whether the enhanced taxa have a role in the expansive success of B. rupestre in these anthropized environments.
  • PublicationOpen Access
    Soil C/N ratios cause opposing effects in forests compared to grasslands on decomposition rates and stabilization factors in southern European ecosystems
    (Elsevier, 2023) Blanco Vaca, Juan Antonio; Durán Lázaro, María; Luquin, Josu; San Emeterio Garciandía, Leticia; Yeste Yeste, Antonio; Canals Tresserras, Rosa María; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Soils store an important amount of carbon (C), mostly in the form of organic matter in different decomposing stages. Hence, understanding the factors that rule the rates at which decomposed organic matter is incorporated into the soil is paramount to better understand how C stocks will vary under changing atmospheric and land use conditions. We studied the interactions between vegetation cover, climate and soil factors using the Tea Bag Index in 16 different ecosystems (eight forests, eight grasslands) along two contrasting gradients in the Spanish province of Navarre (SW Europe). Such arrangement encompassed a range of four climate types, elevations from 80 to 1420 m.a.s.l., and precipitation (P) from 427 to 1881 mm year–1. After incubating tea bags during the spring of 2017, we identified strong interactions between vegetation cover type, soil C/N and precipitation affecting decomposition rates and stabilization factors. In both forests and grasslands, increasing precipitation increased decomposition rates (k) but also the litter stabilization factor (S). In forests, however, increasing the soil C/N ratio raised decomposition rates and the litter stabilization factor, while in grasslands higher C/N ratios caused the opposite effects. In addition, soil pH and N also affected decomposition rates positively, but for these factors no differences between ecosystem types were found. Our results demonstrate that soil C flows are altered by complex site-dependent and site-independent environmental factors, and that increased ecosystem lignification will significantly change C flows, likely increasing decomposition rates in the short term but also increasing the inhibiting factors that stabilize labile litter compounds.
  • PublicationOpen Access
    Restorative pyric herbivory practices in shrub-encroached grasslands enhance nutrient resource availability and spatial heterogeneity
    (Elsevier, 2024-05-31) Canals Tresserras, Rosa María; Múgica Azpilicueta, Leire; Durán Lázaro, María; San Emeterio Garciandía, Leticia; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    Pyric herbivory (PH), the combination of prescribed burnings and targeted herbivory, is a promising tool for landscape restoration that emulates historical disturbance regimes. Nitrogen (N) and phosphorus (P) are crucial nutrients for plant growth and although several studies have analysed the single effects of fire or grazers in their availability, the combined effect of both disturbances in the soil nutrient budgets have been rarely considered. This research was planned to analyse the 2-year impact of PH restoration practices on the availability of N and P in two Ulex gallii-encroached grasslands in the Pyrenees. We monitored available forms of N and P for two years using periodic replacements of ion exchange resins to test the hypothesis that mid-term effect of targeted grazing was more relevant than short-term effect of burning. Additionally, we investigated the role of temperature and precipitation on nutrients accumulation and compared its significance to management factors. Burning transformed vegetation and litter into a spatially heterogeneous layer of ash and charred material, which resulted in a variable availability of N and P at the rhizosphere level. After two periods of PH, nutrient availability was higher in soils from grazed plots compared to ungrazed, and the impacts of early burns were scarcely discernible. Nitrate was found to be the most rainfall-dependent nutrient, and grazing also affected its spatial distribution. Our results suggest that the heterogeneous nutrient enrichment enhanced by PH is important for promoting the establishment of a diverse pool of plant species, including both N2-fixing and non-fixing species. In these rainy areas, the use of burnings alone, without grazing, may perpetuate the dynamics of N2-fixing shrub encroachment.
  • PublicationOpen Access
    Comparison of culturing and metabarcoding methods to describe the fungal endophytic assemblage of brachypodium rupestre growing in a range of anthropized disturbance regimes
    (MDPI, 2021) Durán Lázaro, María; San Emeterio Garciandía, Leticia; Canals Tresserras, Rosa María; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Agronomía, Biotecnología y Alimentación; Gobierno de Navarra / Nafarroako Gobernua, CENEDUCA18; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Fungal endophytes develop inside plants without visible external signs, and they may confer adaptive advantages to their hosts. Culturing methods have been traditionally used to recognize the fungal endophytic assemblage, but novel metabarcoding techniques are being increasingly applied. This study aims to characterize the fungal endophytic assemblage in shoots, rhizomes and roots of the tall grass Brachypodium rupestre growing in a large area of natural grasslands with a continuum of anthropized disturbance regimes. Seven out of 88 taxa identified via metabarcoding accounted for 81.2% of the reads (Helotiaceae, Lachnum sp. A, Albotricha sp. A, Helotiales A, Agaricales A, Mycena sp. and Mollisiaceae C), revealing a small group of abundant endophytes and a large group of rare species. Although both methods detected the same trends in richness and fungal diversity among the tissues (root > rhizome > shoot) and grasslands (low-diversity >high-diversity grasslands), the metabarcoding tool identified 5.8 times more taxa than the traditional culturing method (15 taxa) but, surprisingly, failed to sequence the most isolated endophyte on plates, Omnidemptus graminis. Since both methods are still subject to important constraints, both are required to obtain a complete characterization of the fungal endophytic assemblage of the plant species.