Pereira Dimuro, Graçaliz
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Pereira Dimuro
First Name
Graçaliz
person.page.departamento
Automática y Computación
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
13 results
Search Results
Now showing 1 - 10 of 13
Publication Open Access On fuzzy implications derived from general overlap functions and their relation to other classes(MDPI, 2023) Pinheiro, Jocivania; Santos, Helida; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Santiago, Regivan; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCThere are distinct techniques to generate fuzzy implication functions. Despite most of them using the combination of associative aggregators and fuzzy negations, other connectives such as (general) overlap/grouping functions may be a better strategy. Since these possibly non-associative operators have been successfully used in many applications, such as decision making, classification and image processing, the idea of this work is to continue previous studies related to fuzzy implication functions derived from general overlap functions. In order to obtain a more general and flexible context, we extend the class of implications derived by fuzzy negations and t-norms, replacing the latter by general overlap functions, obtaining the so-called (GO, N)-implication functions. We also investigate their properties, the aggregation of (GO, N)-implication functions, their characterization and the intersections with other classes of fuzzy implication functions.Publication Open Access Pre-aggregation functions: construction and an application(IEEE, 2015) Lucca, Giancarlo; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Mesiar, Radko; Kolesárová, Anna; Bustince Sola, Humberto; Automática y Computación; Automatika eta KonputazioaIn this work we introduce the notion of preaggregation function. Such a function satisfies the same boundary conditions as an aggregation function, but, instead of requiring monotonicity, only monotonicity along some fixed direction (directional monotonicity) is required. We present some examples of such functions. We propose three different methods to build pre-aggregation functions. We experimentally show that in fuzzy rule-based classification systems, when we use one of these methods, namely, the one based on the use of the Choquet integral replacing the product by other aggregation functions, if we consider the minimum or the Hamacher product t-norms for such construction, we improve the results obtained when applying the fuzzy reasoning methods obtained using two classical averaging operators like the maximum and the Choquet integral.Publication Open Access Admissible OWA operators for fuzzy numbers(Elsevier, 2024) García-Zamora, Diego; Cruz, Anderson; Neres, Fernando; Santiago, Regivan; Roldán López de Hierro, Antonio Francisco; Paiva, Rui; Pereira Dimuro, Graçaliz; Martínez López, Luis; Bedregal, Benjamin; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCOrdered Weighted Averaging (OWA) operators are some of the most widely used aggregation functions in classic literature, but their application to fuzzy numbers has been limited due to the complexity of defining a total order in fuzzy contexts. However, the recent notion of admissible order for fuzzy numbers provides an effective method to totally order them by refining a given partial order. Therefore, this paper is devoted to defining OWA operators for fuzzy numbers with respect to admissible orders and investigating their properties. Firstly, we define the OWA operators associated with such admissible orders and then we show their main properties. Afterward, an example is presented to illustrate the applicability of these AOWA operators in linguistic decision-making. In this regard, we also develop an admissible order for trapezoidal fuzzy numbers that can be efficiently applied in practice.Publication Open Access N-dimensional admissibly ordered interval-valued overlap functions and its influence in interval-valued fuzzy rule-based classification systems(IEEE, 2021) Da Cruz Asmus, Tiago; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasOverlap functions are a type of aggregation functions that are not required to be associative, generally used to indicate the overlapping degree between two values. They have been successfully used as a conjunction operator in several practical problems, such as fuzzy rulebased classification systems (FRBCSs) and image processing. Some extensions of overlap functions were recently proposed, such as general overlap functions and, in the interval-valued context, n-dimensional interval-valued overlap functions. The latter allow them to be applied in n-dimensional problems with interval-valued inputs, like interval-valued classification problems, where one can apply interval-valued FRBCSs (IV-FRBCSs). In this case, the choice of an appropriate total order for intervals, like an admissible order, can play an important role. However, neither the relationship between the interval order and the n-dimensional interval-valued overlap function (which may or may not be increasing for that order) nor the impact of this relationship in the classification process have been studied in the literature. Moreover, there is not a clear preferred n-dimensional interval-valued overlap function to be applied in an IV-FRBCS. Hence, in this paper we: (i) present some new results on admissible orders, which allow us to introduce the concept of n-dimensional admissibly ordered interval-valued overlap functions, that is, n-dimensional interval-valued overlap functions that are increasing with respect to an admissible order; (ii) develop a width-preserving construction method for this kind of function, derived from an admissible order and an n-dimensional overlap function, discussing some of its features; (iii) analyze the behaviour of several combinations of admissible orders and n-dimensional (admissibly ordered) interval-valued overlap functions when applied in IV-FRBCSs. All in all, the contribution of this paper resides in pointing out the effect of admissible orders and n-dimensional admissibly ordered interval-valued overlap functions, both from a theoretical and applied points of view, the latter when considering classification problems.Publication Open Access d-Choquet integrals: Choquet integrals based on dissimilarities(Elsevier, 2020) Bustince Sola, Humberto; Mesiar, Radko; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Paternain Dallo, Daniel; Altalhi, A. H.; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Takáč, Zdenko; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13The paper introduces a new class of functions from [0,1]n to [0,n] called d-Choquet integrals. These functions are a generalization of the 'standard' Choquet integral obtained by replacing the difference in the definition of the usual Choquet integral by a dissimilarity function. In particular, the class of all d-Choquet integrals encompasses the class of all 'standard' Choquet integrals but the use of dissimilarities provides higher flexibility and generality. We show that some d-Choquet integrals are aggregation/pre-aggregation/averaging/functions and some of them are not. The conditions under which this happens are stated and other properties of the d-Choquet integrals are studied.Publication Open Access Abstract homogeneous functions and consistently influenced/disturbed multi-expert decision making(IEEE, 2021) Santiago, Regivan; Bedregal, Benjamin; Pereira Dimuro, Graçaliz; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Fardoun, Habib; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this paper we propose a new generalization for the notion of homogeneous functions. We show some properties and how it appears in some scenarios. Finally we show how this generalization can be used in order to provide a new paradigm for decision making theory called consistent influenced/disturbed decision making. In order to illustrate the applicability of this new paradigm, we provide a toy example.Publication Open Access Towards interval uncertainty propagation control in bivariate aggregation processes and the introduction of width-limited interval-valued overlap functions(Elsevier, 2021) Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Sanz Delgado, José Antonio; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaOverlap functions are a class of aggregation functions that measure the overlapping degree between two values. They have been successfully applied as a fuzzy conjunction operation in several problems in which associativity is not required, such as image processing and classification. Interval-valued overlap functions were defined as an extension to express the overlapping of interval-valued data, and they have been usually applied when there is uncertainty regarding the assignment of membership degrees, as in interval-valued fuzzy rule-based classification systems. In this context, the choice of a total order for intervals can be significant, which motivated the recent developments on interval-valued aggregation functions and interval-valued overlap functions that are increasing to a given admissible order, that is, a total order that refines the usual partial order for intervals. Also, width preservation has been considered on these recent works, in an intent to avoid the uncertainty increase and guarantee the information quality, but no deeper study was made regarding the relation between the widths of the input intervals and the output interval, when applying interval-valued functions, or how one can control such uncertainty propagation based on this relation. Thus, in this paper we: (i) introduce and develop the concepts of width-limited interval-valued functions and width limiting functions, presenting a theoretical approach to analyze the relation between the widths of the input and output intervals of bivariate interval-valued functions, with special attention to interval-valued aggregation functions; (ii) introduce the concept of (a,b)-ultramodular aggregation functions, a less restrictive extension of one-dimension convexity for bivariate aggregation functions, which have an important predictable behaviour with respect to the width when extended to the interval-valued context; (iii) define width-limited interval-valued overlap functions, taking into account a function that controls the width of the output interval and a new notion of increasingness with respect to a pair of partial orders (≤1,≤2); (iv) present and compare three construction methods for these width-limited interval-valued overlap functions, considering a pair of orders (≤1,≤2), which may be admissible or not, showcasing the adaptability of our developments.Publication Open Access Additively generated (a,b)-implication functions*(IEEE, 2023) Santos, Helida; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Paiva, Rui; Lucca, Giancarlo; Moura, Bruno; Cruz, Anderson; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaSome problems involving classification through neural networks are known to use inputs out of the scope of the unit interval. Therefore, defining operations on arbitrary closed real intervals may be an interesting strategy to tackle this issue and enhance those application environments. In this paper we follow the ideas already discussed in the literature regarding (a,b)-fusion functions, and (a,b)-negations, to provide a new way to construct implication functions. The main idea is to construct an operator using additively generated functions that preserve the properties required by implication functions.Publication Open Access A proposal for tuning the α parameter in CαC-integrals for application in fuzzy rule-based classification systems(Springer, 2020) Lucca, Giancarlo; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasIn this paper, we consider the concept of extended Choquet integral generalized by a copula, called CC-integral. In particular, we adopt a CC-integral that uses a copula defined by a parameter α, which behavior was tested in a previous work using different fixed values. In this contribution, we propose an extension of this method by learning the best value for the parameter α using a genetic algorithm. This new proposal is applied in the fuzzy reasoning method of fuzzy rule-based classification systems in such a way that, for each class, the most suitable value of the parameter α is obtained, which can lead to an improvement on the system's performance. In the experimental study, we test the performance of 4 different so called CαC-integrals, comparing the results obtained when using fixed values for the parameter α against the results provided by our new evolutionary approach. From the obtained results, it is possible to conclude that the genetic learning of the parameter α is statistically superior than the fixed one for two copulas. Moreover, in general, the accuracy achieved in test is superior than that of the fixed approach in all functions. We also compare the quality of this approach with related approaches, showing that the methodology proposed in this work provides competitive results. Therefore, we demonstrate that CαC-integrals with α learned genetically can be considered as a good alternative to be used in fuzzy rule-based classification systems.Publication Open Access Constructing interval-valued fuzzy material implication functions derived from general interval-valued grouping functions(IEEE, 2022) Pereira Dimuro, Graçaliz; Santos, Helida; Da Cruz Asmus, Tiago; Wieczynski, Jonata; Pinheiro, Jocivania; Bedregal, Benjamin; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCGrouping functions and their dual counterpart, overlap functions, have drawn the attention of many authors, mainly because they constitute a richer class of operators compared to other types of aggregation functions. Grouping functions are a useful theoretical tool to be applied in various problems, like decision making based on fuzzy preference relations. In pairwise comparisons, for instance, those functions allow one to convey the measure of the amount of evidence in favor of either of two given alternatives. Recently, some generalizations of grouping functions were proposed, such as (i) the n-dimensional grouping functions and the more flexible general grouping functions, which allowed their application in n-dimensional problems, and (ii) n-dimensional and general interval-valued grouping functions, in order to handle uncertainty on the definition of the membership functions in real-life problems. Taking into account the importance of interval-valued fuzzy implication functions in several application problems under uncertainty, such as fuzzy inference mechanisms, this paper aims at introducing a new class of interval-valued fuzzy material implication functions. We study their properties, characterizations, construction methods and provide examples.