Pereira Dimuro, Graçaliz
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Pereira Dimuro
First Name
Graçaliz
person.page.departamento
Automática y Computación
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access General grouping functions(Springer, 2020) Santos, Helida; Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; Sanz Delgado, José Antonio; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasSome aggregation functions that are not necessarily associative, namely overlap and grouping functions, have called the attention of many researchers in the recent past. This is probably due to the fact that they are a richer class of operators whenever one compares with other classes of aggregation functions, such as t-norms and t-conorms, respectively. In the present work we introduce a more general proposal for disjunctive n-ary aggregation functions entitled general grouping functions, in order to be used in problems that admit n dimensional inputs in a more flexible manner, allowing their application in different contexts. We present some new interesting results, like the characterization of that operator and also provide different construction methods.Publication Open Access The law of O-conditionality for fuzzy implications constructed from overlap and grouping functions(Elsevier, 2019) Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Fernández Fernández, Francisco Javier; Sesma Sara, Mikel; Pintor Borobia, Jesús María; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Ingeniaritza; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; IngenieríaOverlap and grouping functions are special kinds of non necessarily associative aggregation operators proposed for many applications, mainly when the associativity property is not strongly required. The classes of overlap and grouping functions are richer than the classes of t-norms and t-conorms, respectively, concerning some properties like idempotency, homogeneity, and, mainly, the self-closedness feature with respect to the convex sum and the aggregation by generalized composition of overlap/grouping functions. In previous works, we introduced some classes of fuzzy implications derived by overlap and/or grouping functions, namely, the residual implications R-0-implications, the strong implications (G, N)-implications and the Quantum Logic implications QL-implications, for overlap functions O, grouping functions G and fuzzy negations N. Such implications do not necessarily satisfy certain properties, but only weaker versions of these properties, e.g., the exchange principle. However, in general, such properties are not demanded for many applications. In this paper, we analyze the so-called law of O-Conditionality, O(x, 1(x, y)) <= y, for any fuzzy implication I and overlap function O, and, in particular, for Ro-implications, (G, N)-implications, QL-implications and D-implications derived from tuples (O, G, N), the latter also introduced in this paper. We also study the conditional antecedent boundary condition for such fuzzy implications, since we prove that this property, associated to the left ordering property, is important for the analysis of the O-Conditionality. We show that the use of overlap functions to implement de generalized Modus Ponens, as the scheme enabled by the law of O-Conditionality, provides more generality than the laws of T-conditionality and U-conditionality, for t-norms T and uninorms U, respectively.Publication Open Access Constructing interval-valued fuzzy material implication functions derived from general interval-valued grouping functions(IEEE, 2022) Pereira Dimuro, Graçaliz; Santos, Helida; Da Cruz Asmus, Tiago; Wieczynski, Jonata; Pinheiro, Jocivania; Bedregal, Benjamin; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCGrouping functions and their dual counterpart, overlap functions, have drawn the attention of many authors, mainly because they constitute a richer class of operators compared to other types of aggregation functions. Grouping functions are a useful theoretical tool to be applied in various problems, like decision making based on fuzzy preference relations. In pairwise comparisons, for instance, those functions allow one to convey the measure of the amount of evidence in favor of either of two given alternatives. Recently, some generalizations of grouping functions were proposed, such as (i) the n-dimensional grouping functions and the more flexible general grouping functions, which allowed their application in n-dimensional problems, and (ii) n-dimensional and general interval-valued grouping functions, in order to handle uncertainty on the definition of the membership functions in real-life problems. Taking into account the importance of interval-valued fuzzy implication functions in several application problems under uncertainty, such as fuzzy inference mechanisms, this paper aims at introducing a new class of interval-valued fuzzy material implication functions. We study their properties, characterizations, construction methods and provide examples.Publication Open Access On construction methods of (interval-valued) general grouping functions(Springer, 2022) Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; Pinheiro, Jocivania; Santos, Helida; Borges, Eduardo N.; Lucca, Giancarlo; Rodríguez Martínez, Iosu; Mesiar, Radko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaRecently, several theoretical and applied studies on grouping functions and overlap functions appeared in the literature, mainly because of their flexibility when comparing them with the popular aggregation operators t-conorms and t-norms, respectively. Additionally, they constitute richer classes of disjunction/conjunction operations than t-norms and t-conorms. In particular, grouping functions have been applied as the disjunction operator in several problems, like decision making based on fuzzy preference relations. In this case, when performing pairwise comparisons, grouping functions allow one to evaluate the measure of the amount of evidence in favor of either of two given alternatives. However, grouping functions are not associative. Then, in order to allow them to be applied in n-dimensional problems, such as the pooling layer of neural networks, some generalizations were introduced, namely, n-dimensional grouping functions and the more flexible general grouping functions, the latter for enlarging the scope of applications. Then, in order to h andle uncertainty on the definition of the membership functions in real-life problems, n-dimensional and general interval-valued grouping functions were proposed. This paper aims at providing new constructions methods of general (interval-valued) grouping functions, also providing some examples.