Person:
Pereira Dimuro, Graçaliz

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Pereira Dimuro

First Name

Graçaliz

person.page.departamento

Automática y Computación

person.page.instituteName

ORCID

0000-0001-6986-9888

person.page.upna

811336

Name

Search Results

Now showing 1 - 10 of 11
  • PublicationOpen Access
    Additively generated (a,b)-implication functions*
    (IEEE, 2023) Santos, Helida; Pereira Dimuro, Graçaliz; Callejas Bedregal, Benjamin; Paiva, Rui; Lucca, Giancarlo; Moura, Bruno; Cruz, Anderson; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Some problems involving classification through neural networks are known to use inputs out of the scope of the unit interval. Therefore, defining operations on arbitrary closed real intervals may be an interesting strategy to tackle this issue and enhance those application environments. In this paper we follow the ideas already discussed in the literature regarding (a,b)-fusion functions, and (a,b)-negations, to provide a new way to construct implication functions. The main idea is to construct an operator using additively generated functions that preserve the properties required by implication functions.
  • PublicationOpen Access
    Aggregation functions based on the Choquet integral applied to image resizing
    (Atlantis Press, 2019) Bueno, Jéssica C. S.; Dias, Camila A.; Pereira Dimuro, Graçaliz; Santos, Helida; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    The rising volume of data and its high complexity has brought the need of developing increasingly efficient knowledge extraction techniques, which demands efficiency both in computational cost and in accuracy. Most of problems that are handled by these techniques has complex information to be identified. So, machine learning methods are frequently used, where a variety of functions can be applied in the different steps that are employed in their architecture. One of them is the use of aggregation functions aiming at resizing images. In this context, we introduce a study of aggregation functions based on the Choquet integral, whose main characteristic in comparison with other aggregation functions is that it considers, through fuzzy measure, the interaction between the elements to be aggregated. Thus, our main goal is to present an evaluation study of the performance of the standard Choquet integral the and copula-based generalization of the Choquet integral in relation to the maximum and mean functions, looking for results that may be better than the aggregation functions commonly applied. The results of such comparisons are promising, when evaluated through image quality metrics.
  • PublicationOpen Access
    VCI-LSTM: Vector choquet integral-based long short-term memory
    (IEEE, 2022) Ferrero Jaurrieta, Mikel; Takáč, Zdenko; Fernández Fernández, Francisco Javier; Horanská, Lubomíra; Pereira Dimuro, Graçaliz; Montes, Susana; Díaz, Irene; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Choquet integral is a widely used aggregation operator on one-dimensional and interval-valued information, since it is able to take into account the possible interaction among data. However, there are many cases where the information taken into account is vectorial, such as Long Short-Term Memories (LSTM). LSTM units are a kind of Recurrent Neural Networks that have become one of the most powerful tools to deal with sequential information since they have the power of controlling the information flow. In this paper, we first generalize the standard Choquet integral to admit an input composed by $n$-dimensional vectors, which produces an $n$-dimensional vector output. We study several properties and construction methods of vector Choquet integrals. Then, we use this integral in the place of the summation operator, introducing in this way the new VCI-LSTM architecture. Finally, we use the proposed VCI-LSTM to deal with two problems: sequential image classification and text classification.
  • PublicationOpen Access
    Enhancing LSTM for sequential image classification by modifying data aggregation
    (IEEE, 2021) Takáč, Zdenko; Ferrero Jaurrieta, Mikel; Horanská, Lubomíra; Krivonakova, Nada; Pereira Dimuro, Graçaliz; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Recurrent Neural Networks (RNN) model sequential information and are commonly used for the analysis of time series. The most usual operation to fuse information in RNNs is the sum. In this work, we use a RNN extended type, Long Short-Term Memory (LSTM) and we use it for image classification, to which we give a sequential interpretation. Since the data used may not be independent to each other, we modify the sum operator of an LSTM unit using the n-dimensional Choquet integral, which considers possible data coalitions. We compare our methods to those based on usual aggregation functions, using the datasets Fashion-MNIST and MNIST.
  • PublicationOpen Access
    A proposal for tuning the α parameter in CαC-integrals for application in fuzzy rule-based classification systems
    (Springer, 2020) Lucca, Giancarlo; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Callejas Bedregal, Benjamin; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    In this paper, we consider the concept of extended Choquet integral generalized by a copula, called CC-integral. In particular, we adopt a CC-integral that uses a copula defined by a parameter α, which behavior was tested in a previous work using different fixed values. In this contribution, we propose an extension of this method by learning the best value for the parameter α using a genetic algorithm. This new proposal is applied in the fuzzy reasoning method of fuzzy rule-based classification systems in such a way that, for each class, the most suitable value of the parameter α is obtained, which can lead to an improvement on the system's performance. In the experimental study, we test the performance of 4 different so called CαC-integrals, comparing the results obtained when using fixed values for the parameter α against the results provided by our new evolutionary approach. From the obtained results, it is possible to conclude that the genetic learning of the parameter α is statistically superior than the fixed one for two copulas. Moreover, in general, the accuracy achieved in test is superior than that of the fixed approach in all functions. We also compare the quality of this approach with related approaches, showing that the methodology proposed in this work provides competitive results. Therefore, we demonstrate that CαC-integrals with α learned genetically can be considered as a good alternative to be used in fuzzy rule-based classification systems.
  • PublicationOpen Access
    General overlap functions
    (Elsevier, 2019) Miguel Turullols, Laura de; Gómez, Daniel; Tinguaro, Javier; Montero, Javier; Bustince Sola, Humberto; Pereira Dimuro, Graçaliz; Sanz, Jose Antonio; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y Computación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa.
    As a generalization of bivariate overlap functions, which measure the degree of overlapping (intersection for non-crisp sets) of n different classes, in this paper we introduce the concept of general overlap functions. We characterize the class of general overlap functions and include some construction methods by means of different aggregation and bivariate overlap functions. Finally, we apply general overlap functions to define a new matching degree in a classification problem. We deduce that the global behavior of these functions is slightly better than some other methods in the literature.
  • PublicationOpen Access
    Systematic review of aggregation functions applied to image edge detection
    (MDPI, 2023) Amorim, Miqueias; Pereira Dimuro, Graçaliz; Borges, Eduardo N.; Dalmazo, Bruno L.; Marco Detchart, Cedric; Lucca, Giancarlo; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Edge detection is a crucial process in numerous stages of computer vision. This field of study has recently gained momentum due to its importance in various applications. The uncertainty, among other characteristics of images, makes it difficult to accurately determine the edge of objects. Furthermore, even the definition of an edge is vague as an edge can be considered as the maximum boundary between two regions with different properties. Given the advancement of research in image discontinuity detection, especially using aggregation and pre-aggregation functions, and the lack of systematic literature reviews on this topic, this paper aims to gather and synthesize the current state of the art of this topic. To achieve this, this paper presents a systematic review of the literature, which selected 24 papers filtered from 428 articles found in computer databases in the last seven years. It was possible to synthesize important related information, which was grouped into three approaches: (i) based on both multiple descriptor extraction and data aggregation, (ii) based on both the aggregation of distance functions and fuzzy C-means, and (iii) based on fuzzy theory, namely type-2 fuzzy and neutrosophic sets. As a conclusion, this review provides interesting gaps that can be explored in future work.
  • PublicationOpen Access
    On fuzzy implications derived from general overlap functions and their relation to other classes
    (MDPI, 2023) Pinheiro, Jocivania; Santos, Helida; Pereira Dimuro, Graçaliz; Callejas Bedregal, Benjamin; Santiago, Regivan; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    There are distinct techniques to generate fuzzy implication functions. Despite most of them using the combination of associative aggregators and fuzzy negations, other connectives such as (general) overlap/grouping functions may be a better strategy. Since these possibly non-associative operators have been successfully used in many applications, such as decision making, classification and image processing, the idea of this work is to continue previous studies related to fuzzy implication functions derived from general overlap functions. In order to obtain a more general and flexible context, we extend the class of implications derived by fuzzy negations and t-norms, replacing the latter by general overlap functions, obtaining the so-called (GO, N)-implication functions. We also investigate their properties, the aggregation of (GO, N)-implication functions, their characterization and the intersections with other classes of fuzzy implication functions.
  • PublicationOpen Access
    Pre-aggregation functions: construction and an application
    (IEEE, 2015) Lucca, Giancarlo; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Callejas Bedregal, Benjamin; Mesiar, Radko; Kolesárová, Anna; Bustince Sola, Humberto; Automática y Computación; Automatika eta Konputazioa
    In this work we introduce the notion of preaggregation function. Such a function satisfies the same boundary conditions as an aggregation function, but, instead of requiring monotonicity, only monotonicity along some fixed direction (directional monotonicity) is required. We present some examples of such functions. We propose three different methods to build pre-aggregation functions. We experimentally show that in fuzzy rule-based classification systems, when we use one of these methods, namely, the one based on the use of the Choquet integral replacing the product by other aggregation functions, if we consider the minimum or the Hamacher product t-norms for such construction, we improve the results obtained when applying the fuzzy reasoning methods obtained using two classical averaging operators like the maximum and the Choquet integral.
  • PublicationOpen Access
    Towards interval uncertainty propagation control in bivariate aggregation processes and the introduction of width-limited interval-valued overlap functions
    (Elsevier, 2021) Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Callejas Bedregal, Benjamin; Sanz Delgado, José Antonio; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Overlap functions are a class of aggregation functions that measure the overlapping degree between two values. They have been successfully applied as a fuzzy conjunction operation in several problems in which associativity is not required, such as image processing and classification. Interval-valued overlap functions were defined as an extension to express the overlapping of interval-valued data, and they have been usually applied when there is uncertainty regarding the assignment of membership degrees, as in interval-valued fuzzy rule-based classification systems. In this context, the choice of a total order for intervals can be significant, which motivated the recent developments on interval-valued aggregation functions and interval-valued overlap functions that are increasing to a given admissible order, that is, a total order that refines the usual partial order for intervals. Also, width preservation has been considered on these recent works, in an intent to avoid the uncertainty increase and guarantee the information quality, but no deeper study was made regarding the relation between the widths of the input intervals and the output interval, when applying interval-valued functions, or how one can control such uncertainty propagation based on this relation. Thus, in this paper we: (i) introduce and develop the concepts of width-limited interval-valued functions and width limiting functions, presenting a theoretical approach to analyze the relation between the widths of the input and output intervals of bivariate interval-valued functions, with special attention to interval-valued aggregation functions; (ii) introduce the concept of (a,b)-ultramodular aggregation functions, a less restrictive extension of one-dimension convexity for bivariate aggregation functions, which have an important predictable behaviour with respect to the width when extended to the interval-valued context; (iii) define width-limited interval-valued overlap functions, taking into account a function that controls the width of the output interval and a new notion of increasingness with respect to a pair of partial orders (≤1,≤2); (iv) present and compare three construction methods for these width-limited interval-valued overlap functions, considering a pair of orders (≤1,≤2), which may be admissible or not, showcasing the adaptability of our developments.