Person: Pereira Dimuro, Graçaliz
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Pereira Dimuro
First Name
Graçaliz
person.page.departamento
Automática y Computación
person.page.instituteName
ORCID
0000-0001-6986-9888
person.page.upna
811336
Name
39 results
Search Results
Now showing 1 - 10 of 39
Publication Open Access Type-(2, k) overlap indices(IEEE, 2022) Roldán López de Hierro, Antonio Francisco; Roldán, Concepción; Tíscar, Miguel Ángel; Takáč, Zdenko; Santiago, Regivan; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Pereira Dimuro, Graçaliz; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAutomatic image detection is one of the most im- portant areas in computing due to its potential application in numerous real-world scenarios. One important tool to deal with that is called overlap indices. They were introduced as a procedure to provide the maximum lack of knowledge when comparing two fuzzy objects. They have been successfully applied in the following fields: image processing, fuzzy rule-based systems, decision making and computational brain interfaces. This notion of overlap indices is also necessary for applications in which type-2 fuzzy sets are required. In this paper we introduce the notion of type-(2, k) overlap index (k 0, 1, 2) in the setting of type-2 fuzzy sets. We describe both the reasons that have led to this notion and the relationships that naturally arise among the algebraic underlying structures. Finally, we illustrate how type- (2, k) overlap indices can be employed in the setting of fuzzy rule-based systems when the involved objects are type-2 fuzzy sets.Publication Open Access General grouping functions(Springer, 2020) Santos, Helida; Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; Sanz Delgado, José Antonio; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasSome aggregation functions that are not necessarily associative, namely overlap and grouping functions, have called the attention of many researchers in the recent past. This is probably due to the fact that they are a richer class of operators whenever one compares with other classes of aggregation functions, such as t-norms and t-conorms, respectively. In the present work we introduce a more general proposal for disjunctive n-ary aggregation functions entitled general grouping functions, in order to be used in problems that admit n dimensional inputs in a more flexible manner, allowing their application in different contexts. We present some new interesting results, like the characterization of that operator and also provide different construction methods.Publication Open Access d-XC integrals: on the generalization of the expanded form of the Choquet integral by restricted dissimilarity functions and their applications(IEEE, 2022) Wieczynski, Jonata; Fumanal Idocin, Javier; Lucca, Giancarlo; Borges, Eduardo N.; Da Cruz Asmus, Tiago; Emmendorfer, Leonardo R.; Bustince Sola, Humberto; Pereira Dimuro, Graçaliz; Automática y Computación; Automatika eta Konputazioa; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaRestricted dissimilarity functions (RDFs) were introduced to overcome problems resulting from the adoption of the standard difference. Based on those RDFs, Bustince et al. introduced a generalization of the Choquet integral (CI), called d-Choquet integral, where the authors replaced standard differences with RDFs, providing interesting theoretical results. Motivated by such worthy properties, joint with the excellent performance in applications of other generalizations of the CI (using its expanded form, mainly), this paper introduces a generalization of the expanded form of the standard Choquet integral (X-CI) based on RDFs, which we named d-XC integrals. We present not only relevant theoretical results but also two examples of applications. We apply d-XC integrals in two problems in decision making, namely a supplier selection problem (which is a multi-criteria decision making problem) and a classification problem in signal processing, based on motor-imagery brain-computer interface (MI-BCI). We found that two d-XC integrals provided better results when compared to the original CI in the supplier selection problem. Besides that, one of the d-XC integrals performed better than any previous MI-BCI results obtained with this framework in the considered signal processing problem.Publication Open Access N-dimensional admissibly ordered interval-valued overlap functions and its influence in interval-valued fuzzy rule-based classification systems(IEEE, 2021) Da Cruz Asmus, Tiago; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Callejas Bedregal, Benjamin; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasOverlap functions are a type of aggregation functions that are not required to be associative, generally used to indicate the overlapping degree between two values. They have been successfully used as a conjunction operator in several practical problems, such as fuzzy rulebased classification systems (FRBCSs) and image processing. Some extensions of overlap functions were recently proposed, such as general overlap functions and, in the interval-valued context, n-dimensional interval-valued overlap functions. The latter allow them to be applied in n-dimensional problems with interval-valued inputs, like interval-valued classification problems, where one can apply interval-valued FRBCSs (IV-FRBCSs). In this case, the choice of an appropriate total order for intervals, like an admissible order, can play an important role. However, neither the relationship between the interval order and the n-dimensional interval-valued overlap function (which may or may not be increasing for that order) nor the impact of this relationship in the classification process have been studied in the literature. Moreover, there is not a clear preferred n-dimensional interval-valued overlap function to be applied in an IV-FRBCS. Hence, in this paper we: (i) present some new results on admissible orders, which allow us to introduce the concept of n-dimensional admissibly ordered interval-valued overlap functions, that is, n-dimensional interval-valued overlap functions that are increasing with respect to an admissible order; (ii) develop a width-preserving construction method for this kind of function, derived from an admissible order and an n-dimensional overlap function, discussing some of its features; (iii) analyze the behaviour of several combinations of admissible orders and n-dimensional (admissibly ordered) interval-valued overlap functions when applied in IV-FRBCSs. All in all, the contribution of this paper resides in pointing out the effect of admissible orders and n-dimensional admissibly ordered interval-valued overlap functions, both from a theoretical and applied points of view, the latter when considering classification problems.Publication Open Access Enhancing LSTM for sequential image classification by modifying data aggregation(IEEE, 2021) Takáč, Zdenko; Ferrero Jaurrieta, Mikel; Horanská, Lubomíra; Krivonakova, Nada; Pereira Dimuro, Graçaliz; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaRecurrent Neural Networks (RNN) model sequential information and are commonly used for the analysis of time series. The most usual operation to fuse information in RNNs is the sum. In this work, we use a RNN extended type, Long Short-Term Memory (LSTM) and we use it for image classification, to which we give a sequential interpretation. Since the data used may not be independent to each other, we modify the sum operator of an LSTM unit using the n-dimensional Choquet integral, which considers possible data coalitions. We compare our methods to those based on usual aggregation functions, using the datasets Fashion-MNIST and MNIST.Publication Open Access Exploring the relationships between data complexity and classification diversity in ensembles(SciTePress, 2021) Formentín Garcia, Nathan; Tiggeman, Frederico; Borges, Eduardo N.; Lucca, Giancarlo; Santos, Helida; Pereira Dimuro, Graçaliz; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaSeveral classification techniques have been proposed in the last years. Each approach is best suited for a particular classification problem, i.e., a classification algorithm may not effectively or efficiently recognize some patterns in complex data. Selecting the best-tuned solution may be prohibitive. Methods for combining classifiers have also been proposed aiming at improving the generalization ability and classification results. In this paper, we analyze geometrical features of the data class distribution and the diversity of the base classifiers to understand better the performance of an ensemble approach based on stacking. The experimental evaluation was conducted using 32 real datasets, twelve data complexity measures, five diversity measures, and five heterogeneous classification algorithms. The results show that stacked generalization outperforms the best individual base classifier when there is a combination of complex and imbalanced data with diverse predictions among weak learners.Publication Open Access Towards interval uncertainty propagation control in bivariate aggregation processes and the introduction of width-limited interval-valued overlap functions(Elsevier, 2021) Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Callejas Bedregal, Benjamin; Sanz Delgado, José Antonio; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaOverlap functions are a class of aggregation functions that measure the overlapping degree between two values. They have been successfully applied as a fuzzy conjunction operation in several problems in which associativity is not required, such as image processing and classification. Interval-valued overlap functions were defined as an extension to express the overlapping of interval-valued data, and they have been usually applied when there is uncertainty regarding the assignment of membership degrees, as in interval-valued fuzzy rule-based classification systems. In this context, the choice of a total order for intervals can be significant, which motivated the recent developments on interval-valued aggregation functions and interval-valued overlap functions that are increasing to a given admissible order, that is, a total order that refines the usual partial order for intervals. Also, width preservation has been considered on these recent works, in an intent to avoid the uncertainty increase and guarantee the information quality, but no deeper study was made regarding the relation between the widths of the input intervals and the output interval, when applying interval-valued functions, or how one can control such uncertainty propagation based on this relation. Thus, in this paper we: (i) introduce and develop the concepts of width-limited interval-valued functions and width limiting functions, presenting a theoretical approach to analyze the relation between the widths of the input and output intervals of bivariate interval-valued functions, with special attention to interval-valued aggregation functions; (ii) introduce the concept of (a,b)-ultramodular aggregation functions, a less restrictive extension of one-dimension convexity for bivariate aggregation functions, which have an important predictable behaviour with respect to the width when extended to the interval-valued context; (iii) define width-limited interval-valued overlap functions, taking into account a function that controls the width of the output interval and a new notion of increasingness with respect to a pair of partial orders (≤1,≤2); (iv) present and compare three construction methods for these width-limited interval-valued overlap functions, considering a pair of orders (≤1,≤2), which may be admissible or not, showcasing the adaptability of our developments.Publication Open Access Abstract homogeneous functions and consistently influenced/disturbed multi-expert decision making(IEEE, 2021) Santiago, Regivan; Callejas Bedregal, Benjamin; Pereira Dimuro, Graçaliz; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Fardoun, Habib; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this paper we propose a new generalization for the notion of homogeneous functions. We show some properties and how it appears in some scenarios. Finally we show how this generalization can be used in order to provide a new paradigm for decision making theory called consistent influenced/disturbed decision making. In order to illustrate the applicability of this new paradigm, we provide a toy example.Publication Open Access Fuzzy integrals for edge detection(Springer, 2023) Marco Detchart, Cedric; Lucca, Giancarlo; Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; López Molina, Carlos; Borges, Eduardo N.; Rincon, J. A.; Julian, Vicente; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this work, we compare different families of fuzzy integrals in the context of feature aggregation for edge detection. We analyze the behaviour of the Sugeno and Choquet integral and some of its generalizations. In addition, we study the influence of the fuzzy measure over the extracted image features. For testing purposes, we follow the Bezdek Breakdown Structure for edge detection and compare the different fuzzy integrals with some classical feature aggregation methods in the literature. The results of these experiments are analyzed and discussed in detail, providing insights into the strengths and weaknesses of each approach. The overall conclusion is that the configuration of the fuzzy measure does have a paramount effect on the results by the Sugeno integral, but also that satisfactory results can be obtained by sensibly tuning such parameter. The obtained results provide valuable guidance in choosing the appropriate family of fuzzy integrals and settings for specific applications. Overall, the proposed method shows promising results for edge detection and could be applied to other image-processing tasks.Publication Open Access Additively generated (a,b)-implication functions*(IEEE, 2023) Santos, Helida; Pereira Dimuro, Graçaliz; Callejas Bedregal, Benjamin; Paiva, Rui; Lucca, Giancarlo; Moura, Bruno; Cruz, Anderson; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaSome problems involving classification through neural networks are known to use inputs out of the scope of the unit interval. Therefore, defining operations on arbitrary closed real intervals may be an interesting strategy to tackle this issue and enhance those application environments. In this paper we follow the ideas already discussed in the literature regarding (a,b)-fusion functions, and (a,b)-negations, to provide a new way to construct implication functions. The main idea is to construct an operator using additively generated functions that preserve the properties required by implication functions.